Modified Gauge Invariant Einstein-Maxwell Gravity and Stability of Spherical Perfect Fluid Stars with Magnetic Monopoles

Document Type : Research Paper

Authors

Faculty of Physics, Semnan Universiy, Semnan, Iran, 35131-19111

Abstract

As an alternative gravity model, we consider an extended Einstein-Maxwell gravity containing a gauge invariance property. An extension is assumed to be an addition of a directional coupling between spatial electromagnetic fields with the Ricci tensor. We will see importance of the additional term in making a compact stellar object and the value of its radius. As an application of this model we substitute ansatz of the magnetic field of a hypothetical magnetic monopole which has just time independent radial component and for matter part we assume a perfect fluid stress tensor. To obtain spherically symmetric internal metric of the perfect fluid stellar compact object we solve the Tolman-Oppenheimer-Volkoff equation with a polytropic form of equation of state as p(ρ) = aρ2. Using dynamical system approach we study stability of the solutions for which arrow diagrams show saddle (quasi stable) for a < 0 (dark stars) and sink (stable) for a > 0 (normal visible stars). We check also the energy conditions, speed of sound and Harrison-Zeldovich-Novikov static stability criterion for obtained solution and confirm that they make stable state.

Keywords


[1] Kumar, J., & Bharti, P. 2021, arXiv:2112.12518v2 [gr-qc].
[2] Bhar, P. 2020, Eur. Phys. J. Plus, 135, 757.
[3] Dayanandan, B., Maurya, S. K., & Smitha, T. T. 2017, Eur. Phys. J. A, 53, 141, arXiv:1611.00320 [gr-qc].
[4] Jimnez, J. C., & Fraga, E. S. 2021, Phys. Rev. D, 104, 014002, arXiv:2104.13480 [hep-ph].
[5] Rocha, F., Carvalho, G. A., Deb, D., & Malheiro, M. 2020, Phys. Rev. D, 101, 104008, arXiv:1911.08894 [physics.gen-ph].
[6] Kain, B. 2021, Phys. Rev. D, 104, 043001, arXiv:2108.01404 [gr-qc].
[7] Lai, X., Xia, Ch., & Xu, R. 2023, Advances in phys., X, 8, 2137433, arXiv:2210.01501[hep-ph].
[8] Kippnhahn, R., Weigret A., & Weiss, A. 2012, Stellar Structure and Evolution, Spriger-Verlag, Berlin Heidelberg.
[9] Espino, P. L., Paschalidis, V., Baumgarte, T. W., & Shapiro, S. L. 2019, Phys. Rev. D, 100, 043014.
[10] Bogadi, R. S., Govender, M., & Moyo, S. 2020, Eur. Phys. J. Plus, 135, 170.
[11] Thomas, J. H., & Weiss, N. O. 2012, Sunspots: Theory and Observations, Springer Science & Business Media, 375.
[12] Thompson, C., & Duncan, R. C. 1995, MNRAS, 275, 255.
[13] Thompson, C., & Duncan, R. C. 1996, APJ, 473, 322.
[14] MacDonald, J., & Mullan, D. J. 2004, MNRAS, 348, 702.
[15] Gaurat, M., Jouve, L., Lignires, F., & Gastine, T. 2015, Astron. Astrophys., 580, A103.
[16] Hooper, D. 2006, Dark cosmos: in search of our universe’s missing mass and energy, Harper Collins. ISBN: 9780061976865.
[17] Eidelman, S., Hayes, K. G., Olive, K. A., & Zhu, R. Y. 2004, Phys. Lett. B, 592, 1.
[18] Wen, G. X., & Witten, E. 2004, Nucl. Phys. B, 261, 651.
[19] Coleman, S. 1983, The magnetic monopole fifty years later, In: Zichichi, A. (eds) The unity of the fundamental interactions, Springer, Boston, MA.
[20] Castelnovo, C., Moessner, R., & Sondhi, S. L. 2008, Nature, 451, 42, arXiv:0710.5515 [cond-mat.str-el].
[21] Ray, M. W., Ruokokoski, E., Kandel, S., Möttönen, M., & Hall, D. S. 2014, Nature, 505, 657, arXiv:1408.3133 [cond-mat.quant-gas].
[22] Curie, P. 1894, Sur la possibilité d’existence de la conductibilité magnétique et du magnétisme libre, J. Phys. Theor. Appl., 3, 415.
[23] Dirac, P. 1931, Proc. Roy. Soc., A, 133, 60.
[24] Littlejohn, R. 2007, Lecture notes, University of California, Berkeley, 8.
[25] Price, P. B., Shirk, E. K., Osborne, W. Z., Pinsky, L. S. 1975, Phys. Rev. Lett., 35, 487.
[26] Cabrera, B. 1982, Phys. Rev. Lett., 48, 1378.
[27] Polchinski, J. 2004, Int. J. Mod. Phys. A., 19, 145, arXiv:hep-th/0304042.
[28] Lee, T. D., & Pang, Y. 1987, Phys. Rev. D, 35, 3678.
[29] Del Grosso, L., & Franciolini, G., Pani, P., & Urbano, A. Fermion Soliton Stars, arXiv:2301.08709 [gr-qc].
[30] Balakin, A. B., Bochkarev, V., & Lemos, J. P. S. 2008, Phys. Rev. D, 77, 084013, arXiv:0712.4066 [gr-qc].
[31] Turner, M. S. 1988, Phys. Rev. D, 37, 2743.
[32] Glendenning, N. K. 2012, Compact stars: Nuclear physics, particle physics and general relativity, Springer Science & Business Media.
[33] Baez, J., & Muniain, J. P. 1994, Gauge fields, knots and gravity, World Scientific Publishing Company, 4.
[34] Arfken, G. 1985, Mathematical methos for Physicists, Academic press Inc.
[35] Liebling, S. L., Lehner, L., Neilsen, D., & Palenzuela, C. 2010, Phys. Rev. D, 81, 124023.
[36] Ghaffarnejad, H., & Yaraie, E. 2017, Gen Relativ Gravit, 49, 49, arXiv:1604.06269 [physics.gen-ph].
[37] Ferrari, V., & Germano, M. 1994, Proc. R. Soc. Lond. A, 444, 389.
[38] Hernandez, H. 2018, Eur. Phys. J. C, 78, 883, gr-qc/1808.10526.
[39] Chandrashekhar, S. 1964, Erratum Phys. Rev. Lett., 12, 437.
[40] Chandrashekhar, S. 1964, Astro. Phys. J., 140, 417.
[41] Harrison, B. K., & et al. 1966, Gravitational theory and Garavitational collapse, University of Chicago press, Chicago.
[42] Zeldovich, Y. B., & Novikov, I. D. 1971, Relativity Astrophysical: Stars and Relativity, University of Chicago press, Chicago.