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Abstract. As an alternative gravity model, we consider an extended Einstein-Maxwell
gravity containing a gauge invariance property. An extension is assumed to be an
addition of a directional coupling between spatial electromagnetic fields with the Ricci
tensor. We will see importance of the additional term in making a compact stellar
object and the value of its radius. As an application of this model we substitute
ansatz of the magnetic field of a hypothetical magnetic monopole which has just time
independent radial component and for matter part we assume a perfect fluid stress
tensor. To obtain spherically symmetric internal metric of the perfect fluid stellar
compact object we solve the Tolman-Oppenheimer-Volkoff equation with a polytropic
form of equation of state as p(ρ) = aρ2. Using dynamical system approach we study
stability of the solutions for which arrow diagrams show saddle (quasi stable) for a < 0
(dark stars) and sink (stable) for a > 0 (normal visible stars). We check also the energy
conditions, speed of sound and Harrison-Zeldovich-Novikov static stability criterion for
obtained solution and confirm that they make stable state.
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1 Introduction
High energy astronomical compact objects in cosmic scales are considered as excellent labo-
ratories for investigating astrophysical phenomena, and their relationship with nuclear and
elementary particles physics has opened a new approach to modern astrophysics. High en-
ergy astronomical compact objects include for instance, neutron stars, quark stars, boson
stars, white dwarfs, and black holes can be formed when a massive star runs out of its fuel
and therefore cannot remain stable against its own gravity and then collapses [1,2]. Depend-
ing on the total value of the mass of the star, the collapse changes the star‘s configuration
and then initiates a new structure. In general a star is stable when the pressure force from
the gas atoms is equal to its gravitational force and otherwise will be unstable. The stability
of the star can be investigated in the presence of both electric and magnetic fields. Solving
the Einstein-Maxwell field equations for compact stars with the charged anisotropic fluid
model gives more stable solutions than for neutral stars. The presence of charges creates
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repulsive forces against the gravitational force, and so it causes to stable more for stars with
higher total mass and so larger redshift [3]. In the core of neutron stars, there is a possibility
of hadron-quark phase transition. Charged quarks can create more stable quark stars than
neutron nuclei. In theories beyond the standard model, the effect of dark matter on the
internal structure of the neutron stars suggests that the neutron stars are mixed with dark
matter in the core and it is surrounded by a shell. This feature affects the stellar mass-radius
relation such that dark matter effects are responsible for reducing the stellar mass, while
the main effect of the shell is to increase the stellar radius [4]. In compact objects mixed
with normal matter and dark matter, as the central pressure of dark matter increases, the
neutron stars become unstable and the white dwarfs will have unusual masses and radii.
Therefore, the resulting object will have unusually small mass and radius [5]. When enough
non-destructive dark matter accumulates on a neutron star, it creates a central degenerate
star. If the mass of the dark matter in the star reaches the Chandrasekhar mass limitation of
the star, the dark matter leads to collapse the mixed neutron stars [6]. The stability can also
be investigated for compact stars that are affected by strong magnetic fields and so affect
the process of stellar evolution. Surface magnetic fields observed in stars can be divided into
two categories: the fossil and dynamo hypothesis. The fossil hypothesis is used to explain
magnetism in massive stars, and the dynamo hypothesis, which is used for the inner space of
stars, shows the effects of a strong magnetic field on the propagation of gravitational waves
[7]. Stability of stars has provided via many gravitational models in which the main question
is whether a small perturbation can rapidly decay in comparison to the model’s parameters
or not [8]. Hydrodynamical simulations in general theory of relativity have been applied to
investigate the dynamical stability of differentially rotating neutron stars [9]. Dynamical
instability of a star undergoing a dissipative collapse, has been explored by considering the
role of pressure anisotropy [10]. In general it is confirmed that the magnetic fields have a
main role in evolution and stability of the stars. For instance, it is obvious that sunspots are
the largest concentration of complex magnetic flux [11]. Also there is inferred that energy
source of emission from magnetars is magnetic field (see for instance [12,13]). Furthermore,
the origin and dynamics of magnetic fields on the surface of massive stars have been studied
in ref [14]. Extensive study of the evolution of magnetic field has been performed in rotat-
ing radiative zones of intermediate-mass stars [15]. Due to the importance of the magnetic
field effects on stability of stars we like to study stability of a spherical perfect fluid stel-
lar compact object in presence of radial magnetic field of hypothetical magnetic monopoles
[16–21]. Pierre Curie pointed out in 1894 [22] that magnetic monopoles could conceivably
exist, despite not having been seen so far. From quantum theory of matter, Paul Dirac
[23] showed that if any magnetic monopoles exist in the universe, then all electric charge
in the universe must be quantized (Dirac quantization condition)[24]. Since Dirac’s paper,
several systematic monopole searches have been performed. Experiments in 1975 [25] and
1982 [26] produced candidate events that were initially interpreted [25] as monopoles, but
are now regarded inconclusive. Therefore, it remains an open question whether the magnetic
monopoles exist. Further advances in theoretical particle physics, particularly developments
in grand unified theories and quantum gravity, have led to more compelling arguments that
monopoles do exist. Joseph Polchinski, provided an argument from string theory, confirm-
ing the existence of magnetic unipolarity, which has not yet been observed by experimental
physics [27]. These theories are not necessarily inconsistent with the experimental evidence.
In some theoretical models, magnetic monopoles are unlikely to be observed, because they
are too massive to create in particle accelerators, and also too rare in the Universe to enter
a particle detector with much probability [27].

It is well known that ordinary matter consists of fermions in fact. But the fermions
composed in such a way that the final products have integer spins. For real fermions as
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matter sources, we have to use spinors which can not be directly included in Einstein’s GR
equation. By the way, in cosmology, we consider the perfect fluid as a thermodynamics
representation of the matter content of the universe and it is not constructed from some
elementary particles. The energy density and pressure are two independent thermodynamics
variables and they are related to each other via equation of state p(ρ). However there is
‘Thomas-Fermi approximation‘ where two assumptions are considered usually:

(a) All gravitational and other possible sources are slowly varying fields with respect to
fermion fields and so they do not interact with each other so that one can use mean field
theory (macroscopic quantities) instead of dynamical microscopic fermion fields.

(b) The fermion gas is at equilibrium so that all the macroscopic quantities are time in-
dependent and its stress tensor behaves as perfect fluid which in the isotropic form is
described by mass/energy density ρ and hydrostatic isotropic pressure p (see for instance
[28,29] for more details).

On the other side exotic α dependent term in our used lagrangian (see equation (1)) pro-
duces Θ term of stress tensor (28) which does not satisfiys covariant conservation condition
(Bianchi identity) alone and thus we need other matter stress tensor to balance this inconsis-
tency. Hence we assume the matter term to be a perfect fluid stress tensor with polytropic
type of equation of state p = aρb. Usually the latter form of equation of state is used for neu-
tron stars with b = 2. By using dynamical system approach (see Introduction section in [36])
and solving TOV equations we obtained parametric critical points in the phase space and to
check which of the internal metric solutions near the critical points in phase space are phys-
ical we investigate null energy condition (NEC), weak energy condition (WEC) and strong
energy condition (SEC) together with regularity, causality and Harrison-Zeldovich-Novikov
static stability (HZN) conditions. Layout of this paper is as follows.

In section 2, we present proposed modified Einstein-Maxwell gravity model together
with its physical importance. As a magnetic source to produce a spherically symmetric
static metric of an stellar object we consider radial magnetic field of a magnetic monopole
charge and derive TOV equations of internal metric of the system for stress tensor of perfect
isotropic fluid. We see that the equations of the fields are nonlinear and so we must use
dynamical system approach to obtain solutions of the fields near the critical points in phase
space. This is done in the section 3. Physical analysis of the obtained solutions is dedicated
to the section 4. The last part of this work is devoted to conclusions and prospects for the
development of the work.

2 Gravity model
Let us start with the following generalized Einstein-Maxwell gravity.

I =

∫
d4x

√
g

[
R

16π
+

1

4
FµνF

µν + αFρµR
µ
ηF

ηρ

]
+ Imatter, (1)

where g is absolute value of determinant of the metric field and dimensions in the coupling
constant α1 is square of length and we write the action in the geometric units c = G = 1.
Rµν(R) is Ricci tensor (scalar) and anti-symmetric electromagnetic tensor field Fµν is defined

1Usually, the α exotic term in the above lagrangian is so called the non-minimal susceptibility tensor [30]
and in extended version it can be defined by the Reimann and Weyl tensors.
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by Fµν = ∇µAν −∇νAµ which for torsion free Riemannian geometries can be rewritten as
that

Fµν = ∂µAν − ∂νAµ. (2)
In fact motivation of such a model is given previously in the paper [31] to investigate how
is broken conformal invariance symmetry of the electromagnetic field in the cosmological
context. This is needed to produce large scale magnetic fields (∼ Mpc) with high intensity.
Regretfully, a pure U(1) gauge theory with the standard Lagrangian FµνF

µν/4 is confor-
mal invariant and so for a Robertson-Walker spacetime with scale factor a(t), the magnetic
field intensity decreases as 1/a2 and in the de Sitter inflationary epoch is ineffective and
the vacuum energy density is dominated. While, today, it is obvious that magnetic fields
are present throughout the universe and it plays an important role in astrophysical situa-
tions. For instance presence of high intensity magnetic field generates high pressure which
prevents the star from contracting. Even it is necessary to initiate substantial currents in
superconducting cosmic strings which can be possible just by presence of high intensity cos-
mic magnetic fields (see [31] and reference therein).To do so we must add some additional
suitable scalars to the Lagrangian FµνF

µν/4 such as given in the equation (1). It is easy
to check that the above action functional is not changed by transforming Aµ → Aµ + ∂µξ
where Aµ is four vector electromagnetic potential field and ξ is a scalar gauge field, because
by using the mentioned transformation, we obtain Fµν → Fµν . Varying the above action
with respect to the metric tensor field gµν reads the Einstein metric field equations such
that

Gµν = 8πT total
µν = 8π[TEM

µν + αΘµν + T (matter)
µν ], (3)

where
Gµν = Rµν − 1

2
gµνR, (4)

is the Einstein tensor defined by the Ricci tensor Rµν and the Ricci scalar R = gµνRµν ,

TEM
µν = −1

8

[
FµαF

α
ν + FβνF

β
µ − 1

2
gµνFαβF

αβ

]
, (5)

is traceless electromagnetic field stress tensor,

Θµν =
1

4
gµνFραR

α
ηF

ηρ − 1

2
[FρµRνηF

ηρ + FρηR
η
µF

ρ
ν + FρµR

ρ
ηF

η
ν ]

+
1

4
√
g
∂α

[
∂η

(√
gFα

ρ F
ηρ
)]

gµν − 1

2
√
g
∂µ

(√
gFα

ρ F
ηρ
)
Γναη

− 1

8
√
g
gηµgσν∂λ

[
∂α

(√
gFλ

ρ F
ηρ
)
gασ

]
− 1

8
√
g
gσµgλν∂η

[
∂α

(√
gFλ

ρ F
ηρ
)
gασ

]
+

1

8
√
g
gλµgην∂σ

[
∂α

(√
gFλ

ρ F
ηρ
)
gασ

]
, (6)

is gravity-photon interaction stress tensor and T
(matter)
µν is matter part stress tensor respec-

tively. Here we choose matter content of the system to be isotropic perfect fluid with stress
tensor [32]

(Tmatter)µν = diag(−ρ, p, p, p), (7)
where pressure is related to the density via a suitable equation of state p(ρ) = aρb. Electro-
magnetic Maxwell field equation is given by varying the action functional (1) with respect
to the gauge field Aµ such that

∇νF
µν = 2αJµ, (8)
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where the four current density, Jµ, is defined by

Jµ = ∇λC
λµ, (9)

in which Cλµ is anti-symmetric tensor

Cλµ = −Cµλ =
(
Rµ

ηF
ηλ −Rλ

ηF
ηµ
)
. (10)

One can show that the Maxwell equation (8) can be rewritten as follows.

∇ν F̃
µν = 0, F̃µν = Fµν + 2αCµν , (11)

and for arbitrary anti-symmetric tensor Oµν we have

∇µO
µν =

∂ν(
√
gOµν)
√
g

, (12)

in torsion free curved spacetimes. In the differential geometry formalism of the electromag-
netic field, the above antisymmetric Faraday tensor can be written as follows [33].

F =
1

2
Fµνdx

µ ∧ dxν = B + E ∧ dx0 = dA + E ∧ dx0, (13)

in which
E = Eidx

i, (14)
is 1-form electric field and

B =
1

2
ϵijkB

idxj ∧ dxk, (15)

is 2-form magnetic field. In fact they are spatial vector fields and i, j = 1, 2, 3 correspond to
spatial coordinates while x0 denotes to time coordinate in the curved background spacetime.
In the above equation ϵijk is third rank totally antisymmetric Levi Civita tensor density. Its
numeric value is +1(−1) for {i, j, k} = {1, 2, 3} and for any even (odd) permutations while
it takes zero value for any two repeated indices. The equation (13) can be rewritten to the
following form also [10].

Fµν = nµEν − nνEµ + ϵµνηλB
ηnλ, (16)

where nµ is a unit time-like vector field and is normal to the spatial 3D hypersurface
x0 = const and so can be defined by nµ = −∇µx

0/||∇µx
0||. Consequently the electric

and magnetic fields components {Ei, Bi} are measured by a normal observer aligned to nµ

and so they are absolutely spatial vector fields Eµn
µ = 0 = Bµn

µ. From ADM formalism in
the 1+ 3 decomposition of any 4D curved background spacetime metric the whole of space-
time can be foliated into hypersurfaces with constant time coordinate x0 where hij = gij
are spatial 3-metric defined on the spacelike hypersurfaces. In the other words the general
form of line element ds2 = gµνdx

µdxν reads

ds2 = −α2dt2 + hij(dx
i + βidt)(dxj + βjdt), (17)

in which α is lapse function and βi is shift vector. In the definition (16) ϵµνηλ is fourth
rank totally antisymmetric Levi Civita tensor density. Its numeric value is +1(−1) for
{µ, ν, η, λ} = {0, 1, 2, 3} and for any even (odd) permutations while it takes zero value for
any two repeated indices. For time independent static curved spacetimes the line element
(17) takes a simpler forme because βi = 0 and α and hij take on just spatial coordinates xi.
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In this case we can apply a suitable coordinates transformation to remove all non-diagonal
components of hij such that

ds2 = −(αdt)2 + (γidq
i)2, (18)

in which dℓi = γidqi has length dimension and dqi are spatial coordinates used in a local
curvilinear frame in the 3D space [34]. For the line element (18) the identity (13) reads

Fit =
√
αγiEi, Fjk = ϵijkBiγjγk, (19)

in which repeated indexes for ϵijk do not follow the Einstein summation rule and just follows
permutation cycles. In the next section we write the Einstein equations and the Tolman-
Oppenheimer-Volkoff equation for internal metric of a spherically symmetric static compact
stellar object in presence of magnetic field of a magnetic monopole charge and stress tensor
of a perfect fluid with density ρ and pressure p with polytropic form of equation of state
p = aρ2. This form of equation of state is used usually for Neutron stars [35].

3 Tolman-Oppenheimer-Volkoff equation
Line element for a general spherically symmetric curved spacetime is given by

ds2 = −X(t, r)dt2 + Y (t, r)dr2 + r2(dθ2 + sin2 θdφ2), (20)

for which the equations (19) reads

Fµν =


0 −

√
XY Er −

√
XrEθ −

√
Xr sin θEφ√

XY Er 0
√
Y rBφ −

√
Y r sin θBθ√

XrEθ −
√
Y rBφ 0 r2 sin θBr√

Xr sin θEφ

√
Y r sin θBθ −r2 sin θBr 0

 , (21)

and the t, r components of the Einstein equation (3) reads

X ′

X
= 8πrY (Ttotal)

r
r +

(Y − 1)

2r
, (22)

Y ′

Y
= −8πrY (Ttotal)

t
t −

(Y − 1)

2r
, (23)

and
Ẏ

Y
= 8πrX(Ttotal)

t
r, (24)

where ′ and ˙ are partial derivatives with respect to r and t respectively. In usual way to
study internal metric of spherically symmetric object θθ and φφ components of the Einstein
equations are not used and instead of them, one usually use the Bianchi identity or equiva-
lently, the covariant conservation equation of matter stress tensor. Covariant conservation
equation for the perfect fluid stress tensor (7) namely ∇µ(Tfermions)

µ
ν = 0 gives us equation

of motions for ρ(t, r) and p(t, r) such that

ρ̇ = − Ẏ

2Y
(ρ+ p), (25)

and
p′ = −X ′

2X
(ρ+ p). (26)
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It is easy to check that the only magnetic field having property of spherical symmetry
corresponds just to the magnetic monopole with assumed charge qm whose the magnetic
potential is

Aφ(θ) = −qm cos θ. (27)
By regarding (3) one can show that the corresponding non-vanishing component of the
Maxwell tensor field for (27) is

Fθφ = ∂θAφ = qm sin θ, (28)

which by substituting into (21) we obtain

Br(r) =
qm
r2

. (29)

This is similar to radial electric field of an electric monopole charge Er(r) = qe
r2 . One can

show that for the magnetic monopole field (28) we will have

(TEM )µν =
q2m
8r4


+1 0 0 0
0 +1 0 0
0 0 −1 0
0 0 0 −1

 , (30)

and for Θµ
ν tensor we obtain

Θt
r = − q2m

2r5

(
Ẋ

X
+

Ẏ

Y

)
, (31)

Θt
t =

q2m
4r6Y

[
2(1− 2Y ) + r

(
X ′

X
− Y ′

Y

)]
, (32)

Θr
r =

q2m
r6Y

[
r

2

X ′

X
− (1 + Y )

]
, (33)

and

Θθ
θ = Θφ

φ =
q2m

8r6Y

[
7Y − 8 + 4r

(
2Y ′

Y
− X ′

X

)
+

r2

2

(
X ′′

X
+

Y ′′

Y

)
+

r2

4

(
4X ′Y ′

XY
+

X ′2

X2
− Y ′2

Y 2

)
+

r2Y

2X

[
2Ẋ2

X2
+

Ẏ 2

Y 2
+

ẊẎ

XY
− Ẍ

X
− Ÿ

Y

]]
. (34)

It is easy to check that the magnetic monopole field (28) satisfies the Maxwell equation (11)
as trivially. By substituting (7), (30), (31), (32), and (33) into the equations (22), (23), and
(24) we obtain

p = − 1

16πr2
− q2m

8r4
+

αq2m
r6

+
1

16πr2Y

(
1 +

16παq2m
r4

)
+

1

8πrY

(
1− 4παq2m

r4

)
X ′

X
, (35)

ρ = − 1

16πr2
− q2m

8r4
+

1

16πr2Y

(
1− 8παq2m

r4

)
− αq2m

4r5Y

X ′

X
− 1

8πrY

(
1− 2παq2m

r4

)
Y ′

Y
, (36)

and
Ẋ +

(
X +

r4

4παq2m

)
Ẏ

Y
= 0. (37)
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θ, φ components of the Einstein equations (3) have similar form and they are a constraint
condition between the metric solutions X(r) and Y (r). To investigate internal metric of
stellar compact object we use the covariant conservation equation of matter stress tensor
given by (25) and (26) instead of the θ, φ components of the Einstein equation. To solve
these equations we need also an extra relation between the pressure and the density p = f(ρ)
called as equation of state. In this paper we use general form of polytropic equation of state

p(ρ) = aρb, (38)

where dimensionless parameter b is called as the constant adiabatic exponent but dimensional
parameter a is called as barotropic index. This kind of equation of state is usually applicable
for relativistic stares for instance the neutron stars (b = 2, [35]), the boson or the fermion
stars (b = 4

3 , [6]). We see in the subsequent sections that a > 0(a < 0) corresponds to visible
(dark) stars with stable (quasi stable) nature. We are now in position to solve the above
dynamical equations as follows.

To study stability condition of the Einstein metric solutions it is convenient we consider
static time-independent version of the line element (20) which is dependent just to r coor-
dinate. Hence we ignore all partial time derivatives of the fields. In this case one can see
that (25) and (37) are removed trivially, while (26) by substituting the equation of state
(38) reads

X(r) =
K

(1 + aρb−1)
2b

b−1

, (39)

in which K is a suitable integral constant. By substituting (39) and the equation of state
(38), the equations (35) and (36) read to the following forms respectively

ρ′ =

(
1 + aρb−1

abρb−2

)
8πr(

1− 4παq2m
r4

)[Y (
aρb +

1

16πr2
+

q2m
8r4

−
αq2m
r6

)
−

1

16πr2

(
1 +

16παq2m
r4

)]
, (40)

and

Y ′ =

(
1− 4παq2m

r4

)−1(
1− 2παq2m

r4

)−1{
Y

[
παq2m
r5

(
1 +

16παq2m
r4

)
− 1

2r

(
1− 4παq2m

r4

)(
1− 8παq2m

r4

)]
− Y 2

[
παq2m
r3

(
16πaρb +

1

r2

+
2πq2m
r4

− 16παq2m
r6

)
+ 4πr

(
1− 4παq2m

r4

)(
16πρ+

1

r2
+

2πq2m
r4

)]}
. (41)

These equations show a two dimensional phase space {Y, ρ} which can be solved near the
critical points by approach of dynamical systems. We know that density and pressure of a
compact stellar object should vanish on its surface. The equation (40) is singular at ρ = 0
for b ̸= 2 and so we substitute ansatz b = 2 in that equation. In this case we can assume
that the critical radius of the compact object is its radius R = rc if it satisfies the critical
point equations ρ′ = 0 = Y ′ for which

ρc(R) = 0, rc = R, Yc =
1 +

16παq2m
r4c

1 +
2πq2m
r2c

− 16παq2m
r4c

, (42)

and critical radius of the stellar compact object rc is obtained by the equation(
1−

4παq2m
r4c

)[(
1−

8παq2m
r4c

)(
1 +

2πq2m
r2c

−
16παq2m

r4c

)
+ 8

(
1 +

16παq2m
r4c

)(
1 +

2παq2m
r4c

)]
= 0. (43)
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The first term in the above equation has unacceptable solution as rc = (4παq2m)
1
4 because,

coefficients of the Jacobi matrix calculated at the belove diverge to infinity. Hence, we
exclude this solution from the physical critical radius. Other physical solutions of the critical
radiuses are obtained from the second part of the equation (43). However, one can obtain
Jacobi matrix components as

Jij =
∂O′

i

∂Oj

∣∣∣∣
ρc=0,Y=Yc,b=2

=

(
0 J12
J21 J22

)
, (44)

in which

J12 =
1

4arc

(
1− 4παq2m

r4c

)−1[
1 +

2πq2m
r2c

− 16παq2m
r4c

]

J21 =
−64π2rc

(
1 +

16παq2m
r4c

)2(
1− 2παq2m

r4c

)(
1 +

2πq2m
r2c

− 16παq2m
r4c

)2

J22 =
−παq2m

r5c

(
1 +

16παq2m
r4c

)(
1− 2παq2m

r4c

)(
1− 4παq2m

r4c

) −
1

2rc

(
1− 8παq2m

r4c

)(
1− 2παq2m

r4c

) −
8π
rc

(
1 +

2πq2m
r2c

)(
1 +

16παq2m
r4c

)(
1− 2πq2m

r2c

)(
1 +

2πq2m
r2c

− 16παq2m
r4c

) .
(45)

In the dynamical system approach we can now obtain solutions of the field equations near
the critical point (42) by

d

dr

(
ρ
Y

)
=

(
0 J12
J21 J22

)(
ρ
Y

)
, (46)

which reads to the following equations

ρ(r) = J12

∫ rc

r<rc

Y (r)dr,

Y ′′ − J22Y
′ − J12J21Y = 0. (47)

To solve these equations we must use the initial conditions given by the critical point (42)
such that

Y (r) = Yc

[
ω−e

ω+(r−rc) − ω+e
ω−(r−rc)

ω− − ω+

]
, (48)

in which
ω± =

J22 ±
√
J2
22 + 4J12J21
2

. (49)

By substituting the metric solution (48) into the equation (47) and calculation of its inte-
gration one finds

ρ(r) =
YcJ12

ω− − ω+

[
ω−

ω+
(1− eω+(r−rc))− ω+

ω−
(1− eω−(r−rc))

]
. (50)

In fact ω± given by the equation (49) is obtained from the secular equation of the Jacobi
matrix det(Jij − ωδij) = 0. In the dynamical system approach the obtained solutions near
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the critical points are stable if the eigenvalues ω± have negative values when they are real
and when they are complex numbers then their real part should be negative. In the cases
with positive values for real eigenvalues the obtained solutions are not stable. Hence we
extract the choices with negative values for real part of ω±. Also we can obtain exactly
numeric values for the critical points rc given by the equation (42) but it is useful we study
asymptotic behavior of the obtained solutions for large radiuses rc >>> |qm|. In this case
the equation (42) reads

9

(
rc
qm

)4

+ 2π

(
rc
qm

)2

+ 120παq2m ≈ 0, (51)

with solutions

1 <<

(
rc
qm

)2

=

√
π2 − 1080παq2m − π

9
≈

(
− 40

3
αq2m

) 1
2

, α < 0, (52)

or

rc ≈ qm

(
− 40

3
αq2m

) 1
4

, α < 0. (53)

For rc >> qm one can show

lim
rc
qm

→∞
J12 ∼ 1

4arc
, lim

rc
qm

→∞
J21 ∼ −64π2rc,

lim
rc
qm

→∞
J22 ∼ 0, lim

rc
qm

→∞
Yc(r) ∼ 1, lim

rc
qm

→∞
ω± ∼ ±4πi√

a
. (54)

By substituting these asymptotic behavior of the parameters into the solutions (48) and
(50) we find

Y (r) ≈ cos[Ω(1− r̄)], ρ̄(r̄) =
ρ(r)

ρ(0)
≈ sin[Ω(1− r̄)]

sin[Ω]
, 0 ≤ r̄ ≤ 1, (55)

in which

Ω =
4πrc√

a
, r̄ =

r

rc
, (56)

and we defined central density as
ρ(0) =

sin[Ω]

4aΩ
. (57)

For this density function, one finds mass function such that

M(rc) =

∫ rc

0

ρ(r)dr =
ρ(0)

√
ar2c

sin[Ω]

[
1−

(
sinΩ

Ω

)2]
, (58)

for which
2M

R
=

2M(rc)

rc
=

1

8π

[
1−

(
sinΩ

Ω

)2]
< 1. (59)

This result shows that our obtained solutions describe a regular star without a Schwarzschild-
like horizon. To see stability of the solution it is useful to plot arrow diagrams of the
dynamical equations given by (46) such that

˙̄ρ ≈ Y, Ẏ ≈ ϵρ̄, ρ̄ = 4πaρ, ˙=
1

rc

d

dτ
, r = rcτ, ϵ = −16r2c

a
. (60)



Modified Gauge Invariant Einstein-Maxwell Gravity and . . . 375

See Figure 1 which is plotted for ansatz ϵ = 1 and ϵ = −1. To be more sure of the obtained
solutions, we investigate on these solutions some physical conditions that a real compact
stellar fluid must be had.

4 Physical analysis of the metric solution
A realistic stellar model should satisfy some physical properties including the energy condi-
tions, regularity, causality and stability. In this section we check all these properties for the
obtained solutions.

4.1 Energy conditions
Energy conditions for a physical perfect fluid model are included in three parts the so called
null energy condition (NEC) with ρ ≥ 0, weak energy condition (WEC) with ρ− p ≥ 0 and
strong energy condition (SEC) with ρ−3p ≥ 0. By looking at the diagrams given in Figures
1-d, 2-a, 2-b, 2-c and 2-d one can infer that NEC is dependent to value of the dimensionless
critical radius Ω. These diagrams show that by raising Ω > 3 then, sign of the density
function changes to negative sign for regions r̄ > 0.2 but for Ω ≤ 3 we have ρ > 0 for full
region 0 < r̄ ≤ 1. To study WEC we substitute p = aρ2 to obtain ρ(1 − aρ) > 0 which
reads to the condition aρ < 1. By substituting the obtained solution (55) the WEC called
as aρ < 1 reads

WEC :
sin[Ω(1− r̄)]

4Ω
≤ 1, (61)

and for SEC called as 3aρ ≤ 1 we obtain same inequality condition such that

SEC :
3 sin[Ω(1− r̄)]

4Ω
≤ 1, (62)

We plot diagrams of the above inequalities in Figure 3.

4.2 Regularity
By looking at the obtained density function (55) one can infer that it is convergent regular
function for 0 ≤ r̄ ≤ 1. Furthermore arrow diagrams show that sink stable state for a
regular visible stellar compact object with a > 0 while for a < 0 which is so called as dark
stars the solutions have quasi stable nature in the arrow diagram and so one can infer that
our obtained solutions behave same as stellar compact object with normal (non-dark) matter
with positive barotropic index a > 0.

4.3 Casuality
The speed of sound v2 = dp

dρ for a compact stellar object should be less than the speed of
light c = 1 and so by substituting the equation of state p = aρ2 one can obtain speed of
sound for our model as

v =
√
2aρ =

√
sin[Ω(1− r̄)]

2Ω
, (63)

which its diagram is plotted vs r̄ for different values of the Ω parameter in Figure 4-a. By
looking at this diagram one can infer that the case Ω = 4 is not physical because does not
satisfy the causality condition near the center 0 < r̄ < 0.2. In other words it is complex
imaginary which is not seen in the diagram while other cases 0 < Ω < 3 satisfy the causality
condition completely.
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4.4 Stability
One of ways to check gravitational stability of a stellar system to be not collapsing is investi-
gation of numeric values of the adiabatic index of the perfect fluid which in case of isotropic
state is defined by Γ = dp

dρ (1 + ρ/p) [37,38] . When Γ ≥ 4
3 then a stellar fluid object is said

to be stable from gravitational collapse. For our model one can show that

Γ = 2(1 + aρ) ≥ 4

3
, (64)

which means that our obtained solutions are free of gravitational collapse just for aρ ≥ − 1
3

such that
sin[Ω(1− r̄)]

4Ω
≥ −1

3
. (65)

We plot diagram of this inequality for different values of the parameter Ω vs 0 ≤ r̄ ≤ 1 in
Figure 4-b. Other way to study stability of a compact gaseous stellar object in presence of
radial perturbations was provided for the first time by Chandrashekhar (see [39,40]). It was
developed and simplified by Harrison et al [41] and Zeldovich with collaboration of Novikov
[42]. This is now well known as ‘Harrison-Zeldovich-Novikov (HZN) static stability criterion‘
which infers that any solution describes static and stable (unstable) stellar structure if the
gravitational total mass M(ρ(0)) is an increasing (decreasing) function versus the central
density ρ(0) i.e, ∂M

∂ρ(0) > 0(< 0) under radial pulsations. For our model the HZN condition
reads

HZN =
1√
ar2c

∂M(ρ(0))

∂ρ(0)
=

1

sinΩ

[
1−

(
sinΩ

Ω

)2]
, (66)

which we plot its diagram vs Ω in Figure 4-c. It shows stability condition for choices
0 < Ω < π which obey the other diagrams given by Figures 2. To see this one can look
behavior of the red-dash-lines in Figures 1-d, 2-a,2-b-2 and 2-c where the density functions
take on positive values (NEC) for full interior region of the compact stellar object 0 < r̄ < 1
but not for Ω = 4 given by Figure 2-d.

5 Conclusion
In this paper we considered a modified Einstein-Maxwell gravity where the modification is
the directional dependence of coupling between the electromagnetic field and Ricci tensor.
Motivation of this kind of extension is support of cosmic inflation with cosmic magnetic
fields instead of unknown dark sector of the matter/energy. Hence we encouraged to inves-
tigate such a model for a stellar compact object system with a perfect fluid kind of matter
source. To consider magnetic field of the model we use ansatz of magnetic field of magnetic
monopole charge. We solved Tolman-Oppenheimer-Volkoff equation for interior metric of
a spherically symmetric static perfect fluid. We used dynamical system approach to do
because of nonlinearity form of the dynamical equations and obtained solutions of the fields
near critical points. Our obtained solutions are physical because they satisfy energy condi-
tions (NEC, WEC, SEC) and also the Harrison-Zeldovich-Novikov static stability. Also we
check that sound speed is less than the light velocity and the obtained solutions obey the
causality. In this work we use mean field theory approximation for matter stress tensor with
mean energy density and isotropic pressure and we do not consider microscopic behavior of
the matter source. As an extension of this work we like to study in our next work, effects
of anisotropic imperfect fluid from point of view of its microscopic behavior in presence of
magnetic monopole field.
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(a) (b)

(c) (d)

Figure 1: Arrow diagrams for dark sector of stellar object (Negative pressure a < 0) (a) and visible stellar
object (Positive pressure a > 0) (b), Buchdahl inequality (compactness) parameter (c), density function ρ̄
and metric field Y for Ω = 0.5 (d)
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(a) (b)

(c) (d)

Figure 2: Diagrams of energy density and metric field for Ω = 1 (a), Ω = 2 (b), Ω = 3 (c) and Ω = 4 (d)
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(a) (b)

(c) (d)

(e)

Figure 3: Diagrams for WEC and SEC inequalities for different values of the Ω parameter
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(a) (b)

(c)

Figure 4: Diagrams for speed of sound (a) which is less than the light velocity describing a stable state.
Diagram of adiabatic index (b) for which aρ ≥ − 1

3
defines stabilization of the system.


