Observational Status of Zero-Point Length Cosmic Inflation

Document Type : Research Paper

Authors

1 Department of Theoretical Physics, Faculty of Science, University of Mazandaran, P.O. Box 47416--95447, Babolsar, Iran

2 Department of Physics, K. N. Toosi University of Technology, P.O. Box 15875--4416, Tehran, Iran

Abstract

We examine observational status of cosmological inflation with a zero-point length. By considering the zero-point length correction to the geometric part of the field equations, specially the Hubble parameter, we derive modified background equations, slow-roll parameters and inflation observables including scalar spectral index and tensor-to-scalar ratio in this setup. We conduct numerical analysis on a power-law inflation as a toy model and also some other inflation potentials to assess the impact of a minimum length on the inflationary cosmology. In this regard, we compare our results with recent data from Planck 2018 TT, TE, EE +lowE +lensing, Planck 2018 TT, TE, EE +lowE +lensing+BK15, and  Planck 2018 TT, TE, EE +lowE +lensing+ BK15+ BAO at the $\%68$ and $\%95$ levels of confidence. We find that the impact of the zero-point length varies across different potentials and its characteristic value is of different orders of magnitude (in units of the Planck length), determined based on the various types of the potentials. We show that, while some inflation potentials fall outside the mentioned datasets' confidence levels in the absence of the zero-point length, they are in good agreement with the same datasets in the presence of the zero-point length. In this comparison, we obtain a range of consistency for the zero-point length with the mentioned observational data.

Keywords


[1] Guth, A. H. 1981, Phys. Rev. D, 23, 347.
[2] Linde, A. D. 1982, Physics Letters B, 108, 389.
[3] Kolb, E. 2018, The early universe, CRC press.
[4] Lyth, D. H., & Liddle, A. R. 2009, The primordial density perturbation: Cosmology, inflation and the origin of structure, Cambridge University Press.
[5] Baumann, D. 2022, Cosmology, Cambridge University Press.
[6] Lyth, D. H., & Riotto, A. 1999, Phys. Rep., 314, 1.
[7] Akrami, Y., et al. 2020, A&A, 641, A10.
[8] Fontanini, M., Spallucci, E., & Padmanabhan, T. 2006, Physics Letters B, 633, 627.
[9] Garay, L. J. 1995, International J. Modern Physics A, 10, 145.
[10] Maggiore, M. 1993, Physics Letters B, 304, 65.
[11] Monk, N. A. M. 1998, Endeavour, 22, 27.
[12] Padmanabhan, T. 2010, Reports on Progress in Physics, 73, 046901.
[13] Hawking, S. W. 1975, Commun. Math. Phys., 43, 199.
[14] Bekenstein, J. D. 1972, Commun. Math. Phys., 43, 199.
[15] Bekenstein, J. D. 1973, Phys. Rev. D, 7, 2333.
[16] Bekenstein, J. D. 1974, Phys. Rev. D, 9, 3292.
[17] Jacobson, T. 1995, Phys. Rev. Lett., 75, 1260.
[18] Verlinde, E. 2011, J. High Energy Physics, 2011, 1.
[19] Padmanabhan, T. 2012, [arXiv:1206.4916 [hep-th]].
[20] ’t Hooft, G. 1993, [arXiv:gr-qc/9310026].
[21] Susskind, L. 1995, J. Mathematical Physics, 36, 6377.
[22] Padmanabhan, T. 1985, Annals of Physics, 165, 38.
[23] Medved, A. J. M., & Vagenas, E. C. 2004, Phys. Rev. D-Particles, Fields, Gravitation, and Cosmology, 70, 124021.
[24] Nicolini, P., Spallucci, E., & Wondrak, M. F. 2019, Physics Letters B, 797, 134888.
[25] Adler, R. J., Chen, P., & Santiago, D. I. 2001, General Relativity and Gravitation, 33, 2101.
[26] Cavaglia, M., Das, S., & Maartens, R. 2003, Classical and Quantum Gravity, 20, L205.
[27] Cavaglia, M., & Das, S. 2004, Classical and Quantum Gravity, 21, 4511.
[28] Majumder, B. 2011, Physics Letters B, 703, 402.
[29] Ali, A. F. 2012, J. High Energy Physics, 2012, 1.
[30] Ali, A. F., Nafie, H., & Shalaby, M. 2012, Europhysics Letters, 100, 20004.
[31] Nicolini, P. 2022, General relativity and gravitation, 54, 106.
[32] Luciano, G. G., & Sheykhi, A. 2024, The European Physical Journal C, 84, 682.
[33] Riotto, A. 2002, [arXiv:hep-ph/0210162].
[34] Baumann, D. 2009, [arXiv:0907.5424v2 [hep-th]].
[35] Sheykhi, A. 2010, Phys. Rev. D-Particles, Fields, Gravitation, and Cosmology, 81, 104011.
[36] Sheykhi, A. 2021, Phys. Rev. D, 103, 123503.
[37] Jusufi, K., & Sheykhi, A. 2023, Physics Letters B, 836, 137621.
[38] Gaete, P., Jusufi, K., & Nicolini, P. 2022, Physics Letters B, 835, 137546.
[39] Akbar, M., & Cai, R.-G. 2007, Phys. Rev. D-Particles, Fields, Gravitation, and Cosmology, 75, 084003.
[40] Cai, R.-G., & Kim, S. P. 2005, J. High Energy Physics, 2005, 050.
[41] Luciano, G. G. 2023, The European Physical Journal C, 83, 1.
[42] Liddle, A. R., & Lyth, D. H. 2000, Cosmological inflation and large-scale structure, Cambridge University Press.
[43] Schwarz, D. J., Terrero-Escalante, C. A., & Garcıa, A. A. 2001, Physics Letters B, 517, 243.
[44] Ashoorioon, A., Kempf, A., & Mann, R. B. 2005, Phys. Rev. D-Particles, Fields, Gravitation, and Cosmology, 71, 023503.
[45] Heydarzadeh, M., Mohsenzadeh, M., Abbasiyan-Motlaq, M., & Yusofi, E. 2022, Modern Physics Letters A, 37, 2250191.
[
46] Danielsson, U. H. 2002, Phys. Rev. D, 66, 023511.
[47] Martin, J., Ringeval, C., & Vennin, V. 2014, Physics of the Dark Universe, 5, 75.
[48] Ellis, J., Nanopoulos, D. V., & Olive, K. A. 2013, Phys. Rev. Lett., 111, 111301.
[49] Martin, J., Ringeval, C., Trotta, R., & Vennin, V. 2014, J. Cosmology Astropart. Phys., 2014, 039.
[50] Mantziris, A., Markkanen, T., & Rajantie, A. 2021, J. Cosmology Astropart. Phys., 2021, 077.