Variable Mass of the Test Particle in the Collinear 4-Body System with Triaxial Primaries

Document Type : Research Paper

Authors

1 Dyal Singh College, University of Delhi, Delhi, India

2 Laghrour Abbes University, Khenchela, Algeria

Abstract

The mass variation effect of the test particle is studied in the collinear restricted four-body configuration with the assumption that the shapes of the three primary bodies are triaxial. It is assumed that these three primary bodies are placed in consecutive order on the abscissa axis and their axes are always parallel to the synodic ones. We also consider that the central body have solar radiation effect and whole the system is affected by Coriolis as well as centrifugal forces. Under these assumptions and using Jeans’ law, the equations of motion and quasi-Jacobian integral are determined. And hence the locations of parking points, Poincaré surfaces of section, surfaces with projection and basins of attractions are illustrated for the various values of the variation parameters .$\mu, \phi_1 , \phi_2 ,T_{11} , T_{21} , T_{31} , T_{12} , T_{22} , T_{32} , T_{13} , T_{23} , T_{33}$. Further-more the stability of the parking points are examined in the in-plane as well as in the out-of-plane.

Keywords


[1] Abdulraheem, A., Singh, J. 2008, Astrophys. Space Sci., 317, 9.
[2] Bhatnagar, K. B., Hallan, P. P. 1979, Celest. Mech., 18, 105.
[3] Bhatnagar, K. B., Hallan, P. P. 1995, Celest. Mech., 20, 95.
[4] Sharma, K. R., Taqvi, Z. A., Bhatnagar, K. B. 2001, Celest. Mech. Dyn. Astro., 79, 119.
[5] Abozaid, A. A., Selim, H. H., Gadallah, K. A. K., Hassan, I. A., Abouelmagd, E. I. 2020, Applied Mathematics and Nonlinear Sciences, 5, 157.
[6] Abouelmagd, E. I., García Guirao, J. L., Pal, A. K. 2020a, New Astronomy, 75, 101319.
[7] Alshaery, A. A., Abouelmagd, E. I. 2020, Results in Physics, 17, 103067.
[8] Ansari, A. A. 2021a, Bulgarian Astronomical Journal, 35.
[9] Ansari, A. A., Alam, M., Meena, K. R., Ali, A. 2021, Appl. Math. Inf. Sci., 15, 189.
[10] Scheeres, D. 1998, Celest. Mech. Dyn. Astro., 70, 75.
[11] Scheeres, D. J., Bellerose, J. 2005, Dynamical Systems: An International Journal, 20, 23.
[12] Ansari, A. A. 2021b, Astronomy reports, 65, 1179.
[13] Markellos, V. V., Roy, A. E. 1981, Celest. Mech., 32, 269.
[14] Markellos, V. V., Roy, A. E., Velgakis, M. J., Kanavos, S. S. 2000, Astrophys. Space Sci., 271, 293.
[15] Markellos, V. V., Roy, A. E., Perdios, E. A., Douskos, C. N. 2001, Astrophys. Space Sci., 278, 295.
[16] Douskos, C. N. 2010, Astrophys. Space Sci., 326, 263.
[17] Robe, H. A. G. 1978, Celest. Mech., 16, 343.
[18] Hallan, P. P., Mangang, K. B. 2007, Indian Journal of pure and applied Mathematics, 38, 17.
[19] Singh, J., Mohammed, H. L. 2012, Earth, Moon, Planets, 109, 1.
[20] Ansari, A. A., Singh, J., Alhussain, Z., Belmabrouk, H. 2019, New Astronomy, 73, 101280.
[21] Ansari, A. A. 2020, New Astronomy, 83.
[22] Abouelmagd, E. I., Ansari, A. A., Shehata, S. H. 2020b, Inter. J. Geom. Meth. in Modern Physics, 18, 2150005.
[23] Hanon, M., Heiles, C. 1964, The astronomical journal, 69, 73.
[24] Aguirre, J., Vallejo, J. C., Sanjuan, M. A. F. 2001, Physical Review E, 64, 066208.
[25] Ansari, A. A., Abouelmagd, A. E. 2021, Modern Physics Letters A, 36.
[26] Abouelmagd, E. I., Ansari, A. A. 2022, Astronomy reports, 66, 64.
[27] Sahdev, S. K., Ansari, A. A. 2022, Applications and Applied Mathematics: An Int. J., 17, 439.
[28] Bhatnagar, K. B. 1970, Indian J. of Pure and Applied Math., 2, 583.
[29] Michalodimitrakis, M. 1981, Astrophys. Space Sci., 75, 289.
[30] Maranhao, D., Llibre, J. 1998, Celest. Mech. Dyn. Astro., 71, 1.
[31] Leandro, E. 2006, J. Differential Equations, 226, 323.
[32] Papadakis, K. 2007, Planet. Space Sci., 55, 1368.
[33] Kalvouridis, T. J., Arribas, M., Elipe, A. 2007, Planet. Space Sci., 55, 475.
[34] Baltagiannis, A. N., Papadakis, K. E. 2011, Int. J. Bifurc. Chaos, 21, 2179.
[35] Papadouris, J., Papadakis, K. 2013, Astrophys. Space Sci., 344, 21.
[36] Kumari, R., Kushvah, B. S. 2014, Astrophy. Space Sci., 349, 693.
[37] Ansari, A.A. 2014, Invertis Journal of Science and Technology, 7, 29.
[38] Arribas, M., Abad, A., Elipe, A., Palacios, M. 2016a, Astrophys. Space Sci., 361.
[39] Arribas, M. Abad, A. Elipe, A., Palacios, M. 2016b, Astrophys. Space Sci., 361.
[40] Singh, J., Vincent, A. 2016, Few-Body Syst., 57, 83.
[41] Palacios, M., Arribas, M., Abad, A., Elipe, A. 2019, Celest. Mech., 131, 16.
[42] Ansari, A. A., Prasad, S. N. 2020, Astron. Lett., 46, 275.
[43] Llibre, J., Pasca, D., Valls, C. 2021, Celestial Mech. Dyn. Astr., 133.
[44] Plastino, A.R., Musio, J.C. 1992, Celestial Mech. Dyn. Astr., 53, 227.
[45] Hadjidemetriou, J. 1963, Icarus, 2, 440.
[46] Hadjidemetriou, J. 1967, Adv. Astron. Astrophys., 5, 131.
[47] Singh, J., Ishwar, B. 1985, Celest. Mech., 35, 201.
[48] Adler, C. 1987, Am. J. Phys., 55, 739.
[49] Lukyanov, L. G. 2009, Astron. Lett., 35, 349.
[50] Zhang, M. J., Zhao, C. Y., Xiong, Y. Q. 2012, Astrophys. Space Sci., 337, 107.
[51] Abouelmagd, E. I., Mostafa, A. 2015, Astrophys. Space Sci., 357.
[52] Ansari, A. A. 2017, Italian Journal Of Pure and Applied Mathematics, 38, 581.
[53] Ansari, A. A., Meena, K. R., Prasad, S. N. 2020, Romanian Astron. J., 30, 135.
[54] Bouaziz, F., Ansari, A.A. 2021, Astron. Nachr., 342, 666.
[55] Albidah, A. B., Ansari, A. A. 2023, Astronomy reports.
[56] Albidah, A. B., Ansari, A.A., Kellil, R. 2023, Astronomy and Computing, 42.
[57] Abdullah, Ali, M. 2024, to appear in Solar System Research.
[58] Ansari, A. A., Sahdev, S. K. 2022, Astronomy reports, 66, 1074.
[59] Jeans, J. H. 1928, Astronomy and Cosmogony, Cambridge University Press, Cambridge.
[60] Meshcherskii, I. V. 1949, Works on the mechanics of bodies of variable mass, GITTL, Moscow.
[61] Kellil, F. B. 2021, Astronomy letters, 47.