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Abstract. The mass variation effect of the test particle is studied in the collinear
restricted four-body configuration with the assumption that the shapes of the three
primary bodies are triaxial. It is assumed that these three primary bodies are placed in
consecutive order on the abscissa axis and their axes are always parallel to the synodic
ones. We also consider that the central body have solar radiation effect and the whole
system is affected by Coriolis as well as centrifugal forces. Under these assumptions and
using Jeans’ law, the equations of motion and quasi-Jacobian integral are determined.
And hence, the locations of parking points, Poincaré surfaces of section, surfaces with
projection and basins of attractions are illustrated for the various values of the variation
parameters. Furthermore, the stability of the parking points are examined in the in-
plane as well as in the out-of-plane.
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1 Introduction
Since the dawn of time, man has always sought to know the secrets of the universe that
surrounds him and also the laws that govern the motion of the stars and thus, he was getting
ale to predict the future positions of the stars and planets. Among other questions he asked,
was whether the celestial bodies have free behaviors or interact with each other. With
Newtonś laws, this last question was solved, however, these laws only implicitly describe the
motion of each of the components of a stellar system. Consequently, the various researchers
were interested in solving the equations of motion of each of the components of a stellar
system under different possible configurations ranging from the geometry of their locations
to that of their forms, the radiation they emit, the forces they generate, their number, the
possible variations in the mass of a part or all of these components, etc. Then these problems
took which we commonly call the n-body problems.

If the two-body problem has been fully resolved, the one where the system has more
than two bodies remains open. Many numerical approaches have flourished worldwide.
The recent progress of computing tools and their power facilitated the research works of
the different research teams to give an approximation of the behavior of each of bodies
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of these systems. Let us go back in more detail to the history of such problems. But
before that, by configuration, we mean the classic restricted problem of 3 bodies, the classic
restricted 4 bodies problem in both triangular and collinear frames, the Hill problem, the
Copenhagen problem, the Henon-Heiles problem, etc. By perturbations on one or more than
one component of the system, we mean variable mass, resonance, drag force, solar radiation
pressure, the shape of the bodies, modified Newton potential, Yukawa force, Yarkovasky
force, asteroids belt effect, quantized correction, Coriolis and centrifugal forces, etc. Under
one or more than one of the above perturbations, many research works have been published:
- For the classical restricted three-body problem, we can cite [1-9] - For the Hill problem,
without being exhaustive, we can cite [10-16] - On the other hand, [17-22] studied the Robe
problem, and [23-27] studied the Henon-Heiles system.
- Now for the restricted four-body problem under different perturbations as cited above, our
principal citations are: [28-43]. Notice that for variable mass perturbation, until recently,
the necessary adaptation of Newton’ s second law to celestial systems, where some of their
components have a variable mass, has not been taken into account. Noting that this variation
in mass induces perceptible changes in the behaviour of the studied body, Plastino and
Muzzio, in their article [44], attempted to remedy this. Nevertheless, before the publication
of this work and during the recent decades, an important number of works on such systems
have abounded here and there. Some took in account the perturbation in Newton’s second
law and some others considered that the effect on the system motion is negligible. However,
we have also used, [45-57] to achieve the present work.

This paper is presented under several sections and sub-sections. The introduction is
given in section 1. The equations of motion are determined in section 2. In section 3, we
develop our numerical investigations. Section 4 is reserved to the stability states study of
parking points. The conclusion is given in section 5.

2 Equations of motion
In this configuration, we consider four bodies of masses m1, m2, m3, and m respectively, out
of which the first three (the primaries) are assumed to be triaxial in shape, placed on the
abscissa axis and the fourth body (the test particle) has a variable mass according to Jean’s
law. We also suppose that the test particle is moving in three dimensional space and it is
subject to the effects of the primaries that it does not affect. We also assume that body
of mass m2 has a solar radiation effect with radiation parameter q and placed at the origin
(see figure 1). Finally, we assume that the system is subject to the effects of Coriolis and
centrifugal forces with respectively ϕ1 and ϕ2 as the forces parameters.

If r = ξ.i + η. j + ζ.k, v and a are the position vector, velocity and acceleration of the test
particle, then from the Newton’s second law, the rate of change of momentum is an effective
force F. i.e.

d(m v)
d t

= F,

a +
ṁ
m

v =
F
m
,

r̈ + 2 ϕ1 (ω × ṙ) + ϕ2 ω × (ω × r) +
ṁ
m

(ṙ + ϕ1.ω × r) =
F
m
.

Using the above definition and following the procedure given by [4], [51], and [58], the
equations of motion of the variable mass test particle in the non-dimensional units can be
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Figure 1: Geometric configuration of the problem with primaries as triaxial shapes

written as



ξ̈ − 2 n ϕ1 η̇ +
ṁ
m

(ξ̇ − n ϕ1 η) =
∂P
∂ ξ
,

η̈ + 2 n ϕ1 ξ̇ +
ṁ
m

(η̇ + n ϕ1 ξ) =
∂P
∂ η
,

ζ̈ +
ṁ
m
ζ̇ =
∂P
∂ ζ
,

(1)

where,

P =
n2 ϕ2

2
(ξ2 + η2) +

1
r1

1 + T11

2 r2
1

− 3
2 r4

1

(T21 η
2 + T31 ζ

2)


+
µ q
r2

1 + T12

2 r2
2

− 3
2 r4

2

(T22 η
2 + T32 ζ

2)
 + 1

r3

1 + T13

2 r2
3

− 3
2 r4

3

(T23 η
2 + T33 ζ

2)
 ,

r2
i = (ξ − (i − 2)/2)2 + η2 + ζ2,

n =
√

2(1 + 4 µ) + 3(T11 + T13) + 48 µ (T11 + T12),

and Ti j, i, j = 1, 2, 3, are the triaxiality parameters.
Du to the variable mass of the test particle, we will use Jeans Law [59]; d m

d t
= − v1 mS ,

where v1 is a constant coefficient and S = 1 (notice that 0.4 ≤ S ≤ 4.4). As Meshcherskii
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space time transformation [60] is (ξ, η, ζ) = v−1/2
2 (x1, y1, z1), we then get

m = m0 e−v1 t,

(ξ̇, η̇, ζ̇) = v−1/2
2

{
ẋ1 +

v1

2
x1, ẏ1 +

v1

2
y1, ż1 +

v1

2
z1

}
,

(ξ̈, η̈, ζ̈) = v−1/2
2

ẍ1 + v1 ẋ1 +
v2

1

4
x1, ÿ1 + v1 ẏ1 +

v2
1

4
y1, z̈1 + v1 ż1 +

v2
1

4
z1

 ,
(2)

where m0 is the mass at time t = 0, and v2 =
m
m0

.
Using equations 1, and 2, the equations of motion become

ẍ1 − 2 n ϕ1 ẏ1 =
∂Q
∂ x1
,

ÿ1 + 2 n ϕ1 ẋ1 =
∂Q
∂ y1
,

z̈1 =
∂Q
∂ z1
,

(3)

where

Q =
n2 ϕ2

2
(x2

1 + y2
1) +

v2
1

8
(x2

1 + y2
1 + z2

1)

+ v3/2
2

[ 1
ρ1

{
1 +

T11 v2

2 ρ2
1

− 3 v2

2 ρ4
1

(T21 y2
1 + T31 z2

1)
}
+
µ q
ρ2

{
1 +

T12 v2

2 ρ2
2

− 3 v2

2 ρ4
2

(T22 y2
1 + T32 z2

1)
}

+
1
ρ3

{
1 +

T13 v2

2 ρ2
3

− 3 v2

2 ρ4
3

(T23 y2
1 + T33 z2

1)
}]
,

ρ2
1 = (x1 + v1/2

2 )2 + y2
1 + z2

1,

ρ2
2 = x2

1 + y2
1 + z2

1,

ρ2
3 = (x1 − v1/2

2 )2 + y2
1 + z2

1.

From equation 3, the quasi-Jacobi integral can be written as

(ẋ2
1 + ẏ2

1 + ż2
1) = 2 Q + E + 2

∫ t

t0

(
∂Q
∂t

)
dt, (4)

where E is the quasi-Jacobi energy constant. v1 = 0 and v2 = 1, correspond to the system of
constant mass.

3 Numerical Investigations
This section subdivided in many subsections, is devoted to locations of parking points,
Poincaré surfaces, surfaces with projections and basins of attraction. For these investiga-
tions, the numerical values of the parameters are as follows

µ = 0.25, ϕ1 = ϕ2 = 1.2, T11 = 0.005, T21 = 0.0005, T31 = 0.00005, T12 = 0.002,
T22 = 0.0002, T32 = 0.00002, T13 = 0.001, T23 = 0.0001, T33 = 0.00001.
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3.1 Locations of parking points
The parking points can be obtained by solving numerically the following system.

∂Q
∂x1
= 0,

∂Q
∂y1
= 0,

∂Q
∂z1
= 0.

(5)

When we solve the first two equations by assuming z1 = 0, we get the parking points in
the (x1 − y1)-plane (i.e. the in-plane parking points). When we solve last two equations
by assuming x1 = 0, we get the parking points in the (y1 − z1)-plane (i.e. the out-of-plane
parking points). For the out-of-plane parking points in the (x1− z1)-plane are obtained when
we solve the first and the last equations by assuming y1 = 0. The Figures 2, 3, and 4,
obtained numerically represent the location of the parking points in the above three cited
planes.

Analyze of the obtained figures.

1. In Figure 2, there are six parking points out of which four are on the abscissa axis and
two are on the ordinate axis. it can be also observed that as we increase the value of
v2, all the six parking points move away from the origin.

2. The sub-figures of Figure 3, correspond to two cases; constant mass case (a) and
variable mass case (b). In the constant mass case, there are only two parking points
that appear on the y1−axis while in the variable mass case, there are two more parking
points that appear on the z1-axis.

3. Similarly, the sub-figures of Figure 4 show that in the constant mass case, there are
four parking points on the x1−axis and two additional parking points on the z1−axis
in the variable mass case.
It can be concluded that the variable mass factor generates two new parking points in
the out-of-plane.
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Figure 2: Locations of parking points in x1 − y1–plane at v1 = 0.2 and v2 = 0.4 (blue), 0.8
(red), 1.2 (green).
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(a) At v1 = 0 and v2 = 1
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(b) At v1 = 0.2 and v2 = 0.4

Figure 3: Locations of parking points in y1 − z1–plane.
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(b) At v1 = 0.2 and v2 = 0.4

Figure 4: Locations of parking points in x1 − z1–plane.

3.2 Poincaré surfaces of section
Poincaré surfaces of section is one of the most important dynamical properties of the motion
of the particle and from where we can detect the chaos. We start by writing equations of
motion in the phase plane and then we graph these surfaces using Mathematica. The
sub-figures of Figure 5, illustrate these surfaces in the x1 − ẋ1-plane and the y1 − ẏ1-plane
respectively for two values of the parameters (v1, v2).

3.3 Surfaces with projections
To illustrate the surfaces with projection, we will follow the procedure given by [61]. The
projections of the surfaces onto the configuration plane are known as Hills regions. The
boundaries of these regions are the zero-velocity curves, the locus in the configuration plane
and correspond to zero kinetic energy. We have plotted these surfaces with projections
corresponding to the parking points in the (x1 − y1)−plane and given in Figure 6. Similarly,
we can plot the surfaces in out-of-plane.
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(d) For v1 = 0.2 and v2 = 0.4

Figure 5: Poincaré surfaces of section.

3.4 Basins of convergence

As the above characteristics, the basins of convergence is also one of the most important
dynamical properties of the motion of the test particle. We illustrated them by using the
N-R method in the (x1 − y1)-plane. These basins are the composition of all initial conditions
that converge to parking points. The iterative code to study this property is as follows

x1n+1 = x1n −
Qx1 Qy1 y1 − Qy1 Qx1 y1

Qx1 x1 Qy1 y1 − Qx1 y1 Qy1 x1

,

y1n+1 = y1n −
Qy1 Qx1 x1 − Qx1 Qx1 y1

Qx1 x1 Qy1 y1 − Qx1 y1 Qy1 x1

,

(6)

where x1n and y1n are the values of nth step for x1 and y1 in the N-R iterative process. (x1,
y1) will be in the basins if the initial point converges rapidly to one of the parking points.
If it converges to an attractor (parking point) then the process will stop and basins will be
generated. We classify parking points on the plane by color code.
The Sub-Figure 7(a) shows the basins of attraction in the (x1 − y1)-plane, while the Sub-
Figure 7(b) represents the zoomed part of the attracting domain near the attracting points.
The attracting points Li, (i = 1, . . . , 4) lie in the cyan color region while the attracting points
Li, (i = 5, 6) lie in the blue and green color regions respectively. Notice that these regions
extend to infinity.
Similarly, we can illustrate the basins of attraction in the out-of-plane.
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(a) Corresponding to L1 (b) Corresponding to L2, 3 (c) Corresponding to L4

(d) Corresponding to L5, 6

Figure 6: Surfaces with projections

(a) For v1 = 0.2 and v2 = 0.4 (b) Zoomed part of figure (a) near
parking points

Figure 7: Basins of attractions
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4 Stability states
To study the stability, we will follow the procedures as in [60], and in [54] The characteristic
polynomial of equation 3 will then be

λ6 + H5 λ
5 + H4 λ

4 + H3 λ
3 + H2 λ

2 + H1 λ + H0 = 0, (7)

where

H5 = −3v1,

H4 = 4 ϕ2
1 n2 − Q0

x1 x1
− Q0

y1 y1
− Q0

z1 z1
+

15
4

v2
1,

H3 = 2 v1 (Q0
x1 x1
+ Q0

y1 y1
+ Q0

z1 z1
− 5

4
v2

1 − 4 ϕ2
1 n2),

H2 =
15
16

v4
1 +

3
2

v2
1 (4 ϕ2

1 n2 − Q0
x1 x1
− Q0

y1 y1
− Q0

z1 z1
)

− [ {4 ϕ2
1 n2 − Q0

x1 x1
− Q0

y1 y1
}Q0

z1 z1

+ (Q0
x1 y1

)2 + (Q0
x1 z1

)2 + (Q0
y1 z1

)2 − Q0
x1 x1

Q0
y1 y1

],

H1 = −
3

16
v5

1 +
v3

1

2
{Q0

x1 x1
+ Q0

y1 y1
+ Q0

z1 z1
− 4 ϕ2

1 n2}

+ v1 [(Q0
x1 y1

)2 + (Q0
x1 z1

)2 + (Q0
y1 z1

)2 − Q0
x1 x1

Q0
y1 y1

+ { 4 ϕ2
1 n2 − Q0

x1 x1
− Q0

y1 y1
}Q0

z1 z1
],

H0 =
1

64
v6

1 +
1
16

v4
1{4 ϕ2

1 n2 − Q0
x1 x1
− Q0

y1 y1
− Q0

z1 z1
}

− 1
4

v2
1 [{4 ϕ2

1 n2 − Q0
x1 x1
− Q0

y1 y1
}Q0

z1 z1
+ (Q0

x1 y1
)2 + (Q0

x1 z1
)2

+ (Q0
y1 z1

)2 − Q0
x1 x1

Q0
y1 y1

] + (Q0
x1 z1

)2 Q0
y1 y1
+ Q0

x1 x1
(Q0

y1 z1
)2

+ (Q0
x1 y1

)2 Q0
z1 z1
− Q0

x1 x1
Q0

y1 y1
Q0

z1 z1
− Q0

x1 y1
Q0

x1 z1
Q0

y1 z1

+ (Q0
x1 y1

)2 Q0
z1 z1
− Q0

x1 x1
Q0

y1 y1
Q0

z1 z1
− Q0

x1 y1
Q0

x1 z1
Q0

y1 z1
.

The numerical solutions of equation 7 are given in the following tables and they correspond
to the parking points. From these collected values, we observed that all the roots are either
a positive real number or a complex number with positive real part. All the parking points
either in-plane or out-of-plane are then unstable.

5 Conclusion
The mass variation effect is studied in the collinear restricted 4-body configuration where
three primary bodies are taken as triaxial in shapes and placed in the consecutive order on
the abscissa axis. Out of these three triaxial bodies the middle one is taken as source of
radiation pressure. We also assume that the system is perturbed by Coriolis and centrifugal
forces. From the obtained equations of motion, we evaluated six parking points in the in-
plane motion and four parking points in the out-of-plane motion. In the classical case, there
are six parking points in the in-plane motion and two parking points in the out-of-plane
motion. We have illustrated the Poincaré surfaces of section and found that the surfaces are
symmetrical about the abscissa axis. The system doesn’t present any chaos. Further, the
surfaces with projections are performed corresponding to each parking point. For the basins
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Table 1: The nature of in-plane parking points at v1 = 0.2, v2 = 0.4, and ϕ1 = ϕ2 = 1.4.

Parking Point Roots Nature
x1 −Co. y1 −Co.

± 0.6100000000 0.0000000000 0.09999999999 − 426.7597201310 i Unstable
0.0999999999 + 132.0000000000 i
0.1000000000 ± 398.0676917576 i

± 762.2185412135

± 0.1100000000 0.0000000000 0.0999999999 ± 7.4539857542 i Unstable
0.1000000007 ± 7.2187591245 i

− 9.9957585811
10.1957585811

0.0000000000 ± 0.3650000000 − 0.4286698320 ± 2.4237724816 i Unstable
0.0999999999 ± 1.5920864564 i
0.6286698320 ± 2.4237724816 i

Table 2: The nature of out-of-plane parking points at v1 = 0.2, v2 = 0.4, x1 = 0, and
ϕ1 = ϕ2 = 1.4.

Parking Point Roots Nature
y1 −Co. z1 −Co.

± 0.3650000000 0.0000000000 0.0999999984 ± 1.5840228164 i Unstable
0.0999999996 ± 3.8511170670 i
0.1000000023 ± 1.8101983636 i

0.0000000000 ± 4.4500000000 0.0999999999 ± 4.3498097428 i Unstable
0.1000000003 ± 1.3211407943 i

− 0.0489253328
0.2489253328

Table 3: The nature of out-of-plane parking points at v1 = 0.2, v2 = 0.4, y1 = 0, and
ϕ1 = ϕ2 = 1.4.

Parking Point Roots Nature
x1 −Co. z1 −Co.

0.0000000000 ± 4.4500000000 0.1000000000 ± 4.3498097428 i Unstable
0.1000000003 ± 1.3211407943 i

− 0.0489253328
0.2489253328

of attraction corresponding to the attracting points, one of the most important dynamical
properties of the motion, they extended to infinity. Finally, the stability of the parking
points turned out to be unstable in this configuration.
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