Analytical Expression of the Beam-Plasma Particles Distribution Function Effect on the Electromagnetic Instability Growth Rate in Strongly Coupled Plasmas

Document Type : Research Paper

Authors

1 Department of Physics, Faculty of Basic Sciences, Nour Branch, Islamic Azad University, Nour 4817935861, Iran

2 Department of Physics, Faculty of Basic Sciences, University of Mazandaran, P.O. Box 47415–416, Babolsar, Iran

Abstract

The beam-plasma particles distribution function is one of the parameters which plays an important role in the energy-traveling mechanism of the relativistic electrons generated by the laser-plasma interaction in the Inertial Confinement Fusion Plasma. This paper investigates an analytical expression of the beam-plasma particles distribution function effect such as the Kappa, Semi-relativistic Maxwellian and bi-Maxwell distributions on the Weibel electromagnetic instability growth rate in strongly coupled plasmas under the low-frequency wave condition. The obtained results show that the maximum growth rate of the beam- plasma particles with semi-Maxwell distribution function is based on the temperature anisotropy parameter, density gradient, quantum and relativistic parameters has the highest possible value compared to the other two beam-plasma particles distribution functions. Also, the bi-Maxwellian distribution function has a more stable growth rate than the Kappa and the semi-Maxwell distribution functions.

Keywords


[1] Freeman, J., Clauser, M., & Thompson, S. 1977, Nucl. Fusion, 17, 223.
[2] Mahdavi, M., & Khodadadi Azadboni, F. 2013, Physics of Plasmas, 20, 122708.
[3] Mahdavi, M., & Khodadadi Azadboni, F. 2016, J. Fusion Energy, 35, 154.
[4] Weibel, E. S. 1959, Rev. Lett., 2, 83.
[5] Fujita, Y., Kato, T. N., & Okabe, N. 2006, Physics of Plasmas, 13, 122901.
[6] Mahdavi, M., & Hosseini, S. A. 2016, Physics, 66, 709.
[7] Amininasab, S., Sadighi-Bonabi, R., & Khodadadi Azadboni, F. 2018, Physics of Plasmas, 25, 022122.
[8] Khodadadi Azadboni, F. 2021, J. Physics, 71, 375.
[9] Davidson, C., Sheng, Z. M., Wilson, T., & McKenna, P. 2022, Physics of Plasmas, 88.
[10] Zaheer, S., & Murtaza, G. 2007, Physics of Plasmas, 14, 072106.
[11] Mahdavi, M., & Khanzadeh, H. 2013, Physics of Plasmas, 20, 052114.
[12] Zaheer, S., & Murtaza, G. 2007, Physics of Plasmas, 14, 022108.
[13] Haas, F. 2008, Physics of Plasmas, 15, 022104.
[14] Fathalian, N., & Safari, H. 2010, ApJ, 724, 411.
[15] Mahdavi, M., & Khanzadeh, H. 2014, Physics of Plasmas, 21, 062708.
[16] Kuri, D. K., & Das, N. 2014, Physics of Plasmas, 21, 042106. bibitem17 Mahdavi, M., & Khodadadi Azadboni, F. 2015, Advances in High Energy Physics, 1.