Thermodynamics of Horndeski Black Holes with Generalized Uncertainty Principle

Document Type : Research Paper

Authors

1 2 Department of Theoretical Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar

2 2 Department of Theoretical Physics, Faculty of Basic Sciences, University of Mazandaran,

Abstract

Horndeski theory is the most general scalar-tensor extension of General Relativity with second order field equations. It may be interesting to study the effects of the Generalized Uncertainty Principle on a static and asymptotically flat shift symmetric solutions of the Horndeski black holes. With this motivation, here we obtain the modified black hole temperatures in shift symmetric Horndeski gravity by employing the Generalized Uncertainty Principle. Using the corrected temperature, the entropy and heat capacity are calculated with details. We also investigate the tunneling probability of particles from Horndeski black holes horizon and possible correlations between the emitted modes (particles).

Keywords


[1] Berti, E. et al., 2015, Class. Quant. Grav., 32, 243001.
[2] Clifford, M. W. 2014, Living Rev. Rel., 17, 4.
[3] Riess, A. G., & et al. 1998, ApJ, 116, 1009.
[4] Perlmutter, S., & et al. 1999, ApJ, 517, 565.
[5] Sofue, Y., & Rubin, V. 2001, Annu. Rev. Astron. Astrophys., 39, 137.
[6] Clifton, T., Ferreira, P. G., Padilla, A., & Skordis, C. 2012, Phys. Rept. 513, 1.
[7] Papantonopoulos, E. 2015, Lect. Notes Phys., 892.
[8] Horndeski, G. W. 1974, Int. J. Theoret. Phys., 10, 363.
[9] Saridakis, E. N., & Sushkov, S. V. 2010, Phys. Rev. D, 81, 083510.
[10] Charmousis, C., Copeland, E. J., Padilla, A., & Saffin, P. M., 2012, Phys. Rev. Lett., 108, 051101.
[11] Zumalacárregui, M., & Garcá-Bellido, J. 2014, Phys. Rev. D, 89, 064046.
[12] Gleyzes, J., Langlois, D., Piazza, F., & Vernizzi, F. 2015, Phys. Rev. Lett., 114, 211101.
[13] Langlois, D., & Noui, K. 2016, JCAP, 02, 034.
[14] Kobayashi, T. 2019, Rept. Prog. Phys., 82, 086901.
[15] Rinaldi, M. 2012, Phys. Rev. D, 86, 084048.
[16] Babichev, E., Charmousis, C., & Lehébel, A. 2016, Class. Quantum Grav., 33, 154002.
[17] Babichev, E., Charmousis, C., & Lehébel, A. 2017, JCAP, 04, 027.
[18] Anabalon, A., Cisterna, A., & Oliva, J. 2014, Phys. Rev. D, 89, 084050.
[19] Cisterna, A., & Erices, C. 2014, Phys. Rev. D, 89, 084038.
[20] Badía, J., & Eiroa, E. F. 2017, Eur. Phys. J. C, 77, 779.
[21] Kumar, J., Islam, S. U., & Ghosh, S. G. 2022, Eur. Phys. J. C, 82, 443.
[22] Afrin, M., & Ghosh, S. G. 2022, ApJ, 932, 51.
[23] Miao, Y. G., Xu, Z. M. 2016, Eur. Phys. J. C, 76, 638.
[24] Hajian, K., Liberati, S., Sheikh-Jabbari, M. M., & Vahidinia, M. H. 2021, Phys. Lett. B, 812, 136002.
[25] Walia, R. K., Maharaj, S. D., & Ghosh, S. G. 2022, Eur. Phys. J. C, 82, 547.
[26] Salahshoor, Kh., & Nozari, K. 2018, Eur. Phys. J. C, 78, 486.
[27] Veneziano, G. 1986, Europhys. Lett., 2, 199.
[28] Amati, D., Cialfaloni, M., & Veneziano, G. 1989, Phys. Lett. B, 216, 41.
[29] Gross, D. J., & Mende, P. F. 1987, Phys. Lett. B, 197, 129.
[30] Konishi, K., Paffuti, G., & Provero, P. 1990, Phys. Lett. B, 234, 276.
[31] Garay, L. J. 1995, Int. J. Mod. Phys. A, 10, 145.
[32] Capozziello, S., Lambiase, G., & Scarpetta, G. 2000, Int. J. Theor. Phys., 39, 15.
[33] Maggiore, M. 1993, Phys. Lett. B, 304, 65.
[34] Scardigli, F. 1999, Phys. Lett. B, 452, 39.
[35] Kempf, A. 1994, J. Math. Phys., 35, 4483.
[36] Kempf, A., Mangano, G., & Mann, R. B. 1995, Phys. Rev. D, 52, 1108.
[37] Hinrichsen, H., & Kempf, A. 1996, J. Math. Phys., 37, 2121.
[38] Kempf, A. 1997, J. Math. Phys., 38, 1347.
[39] Hossenfelder, S. 2012, Class. Quant. Grav., 29, 115011.
[40] Nozari, K., & Etemadi, A. 2012, Phys. Rev. D, 85, 104029.
[41] Hossenfelder, S. 2013, Living Rev. Relativ., 16, 2.
[42] Tawfik, A., & Diab, A. 2014, Int. J. Mod. Phys. D, 23, 1430025.
[43] Nozari, K., & Azizi, T. 2006, Gen. Rel. Grav., 38, 735.
[44] Harbach, U., & Hossenfelder, S. 2006, Phys. Lett. B, 632, 379.
[45] Das, S., & Vagenas, E. C. 2008, Phys. Rev. Lett., 101, 221301.
[46] Basilakos, S., Das, S., & Vagenas, E. C. 2010, JCAP, 1009, 027.
[47] Ali, A. F. 2011, Class. Quant. Grav., 28, 065013.
[48] Amelino-Camelia, G. 2000, Int. J. Mod. Phys. D, 11, 35.
[49] Kowalski-Glikman, J. 2005, Lect. Notes Phys., 669, 131.
[50] Amelino-Camelia, G., Kowalski-Glikman, J., Mandanici, G., & Procaccini, A. 2005, Int. J. Mod. Phys. A, 20, 6007.
[51] Magueijo, J., & Smolin, L. 2002, Phys. Rev. Lett., 88, 190403.
[52] Magueijo, J., & Smolin, L. 2003, Phys. Rev. Lett. D, 67, 044017.
[53] Cortes, J. L., & Gamboa, J. 2005, Phys. Rev. D, 71, 065015.
[54] Ali, A. F., Das, S., & Vagenas, E. C. 2009, Phys. Lett. B, 678, 497.
[55] Ali, A. F., Das, S., & Vagenas, E. C. 2011, Phys. Rev. D, 84, 044013.
[56] Nozari, K., & et al. 2019, Eur. Phys. J. C, 79, 465.
[57] Nozari, K., Gorji, M. A., Hosseinzadeh, V., & Vakili, B. 2016, Class. Quant. Gravit., 33, 025009.
[58] Adler, R. J., & Santiago, D. I. 1999, Mod. Phys. Lett. A, 14, 1371.
[59] Nozari, K. 2007, Astropart. Phys., 27, 169.
[60] Adler, R. J., Chen, P., & Santiago, D. I. 2001, Gen. Rel. Grav., 33, 2101.
[61] Amelino-Camelia, G., Arzano, M., Ling, Y., & Mandanici, G. 2006, Class. Quant. Grav., 23, 2585.
[62] Nozari, K., & Sefiedgar, A. S. 2006, Phys. Lett. B, 635, 156.
[63] Kim, W., Son, E. J., & Yoon, M. 2008, JHEP, 0801, 035.
[64] Banerjee, R., & Ghosh, S. 2010, Phys. Lett. B, 688, 224.
[65] Myung, Y. S., Kim, Y. W., & Park, Y. J. 2007, Phys. Lett. B, 645, 393.
[66] Nozari, K., & Saghafi, S. 2012, JHEP, 11 005.
[67] Vagnozzi, S., & et. al. 2023, Class. Quantum Grav., 40, 165007.
[68] Said, J. L., & Adami, K. Z. 2011, Phy. Rev. D, 83, 043008.
[69] Ohanian, H., & Ruffini, R. 1994, Gravitation and Spacetime, 2nd edition (W. W. Norton), 481.
[70] Hawking, S. W. 1974, Nature, 248, 30.
[71] Parikh, M. K., & Wilczek, F. 2000, Phys. Rev. Lett., 85, 5042.
[72] Medved, A. J. M. 2002, Phys. Rev. D, 66, 124009.
[73] Miao, Y. G., Xue, Z., & Zhang, S. J. 2011, Europhys. Lett., 96, 1000.
[74] Qing-Quan, J., Shu-Zheng Y., & Hui-Ling, L. 2006, Commun. Theor. Phys., 45, 457.
[75] Shankaranarayanan, S. 2003, Phys. Rev. D, 67, 084026.