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Abstract. Horndeski theory is the most general scalar-tensor extension of General
Relativity with second order field equations. It may be interesting to study the effects
of the Generalized Uncertainty Principle on a static and asymptotically flat shift sym-
metric solutions of the Horndeski black holes. With this motivation, here we obtain the
modified black hole temperatures in shift symmetric Horndeski gravity by employing
the Generalized Uncertainty Principle. Using the corrected temperature, the entropy
and heat capacity are calculated with details. We also investigate the tunneling proba-
bility of particles from Horndeski black holes horizon and possible correlations between
the emitted modes (particles).

Keywords: Generalized Uncertainty Principle, Quantum Gravity, Horndeski Theory,
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1 Introduction
At present, it is believed that Nature can be described by quantum mechanics and general
relativity. In 1915, Albert Einstein proposed General Relativity (GR) that is able to suc-
cessfully describe physical phenomena in astrophysics and cosmology [1,2]. Besides all the
significant achievements, general relativity can not describe some theoretical and observa-
tional issues. One of the known failures of GR is the problem of black hole singularities that
leads to various black hole spacetimes singularities. It seems that GR is cursed with own
solutions, i.e., black holes. Also, the cosmological constant problem and the issue of the dark
matter/energy can not be explained by GR (for more details see for instance [3–5]). During
the recent decades, many efforts have been undertaken to construct a more comprehensive
theory. One way to modify GR is reconstructing the geometric part of the Einstein field
equations [6,7]. A special class, that is, the most general scalar-tensor theory with second
order field equations, proposed by Horndeski in 1970s [8]. Recently, Hondeski theory has
been received much attention and investigated in astrophysics and cosmology [9–14]. More
attractively, Horndeski black holes have been investigated. For instance, spherically sym-
metric and static solutions [15–17], black hole solutions in the presence of a cosmological
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constant and magnetic field [18,19], the observational results and gravitational lensing effects
for Horndeski black holes [20–22] are studied. Moreover, thermodynamics of Horndeski black
holes are studied, Hawking temperature and entropy and circular orbits are investigated also
in [23–26].

Trying to construct a quantum theory of gravity leads to a minimal measurable length
of the order of the Planck length, ℓP ∼ 10−35m. Most quantum gravity approaches such
as string theory [27–30], loop quantum gravity [31] and quantum geometry [32] predict
the existence of a minimal measurable length in spacetime [33]. Also, the existence of a
minimal measurable length can be supported from micro-black hole Gedanken experiment
[34]. In GUP concept, the Heisenberg Uncertainty Principle (HUP) is modified to the so
called Generalized Uncertainty Principle (GUP) [35–42]. Incorporation of GUP effects in
standard quantum mechanics’ problems reveals several novel corrections and modifies the
results in high energy regime [43–47]. On the other hand, Doubly Special Relativity (DSR)
proposes an upper bound for a test particle’s momentum [48–50]. In fact, the existence
of a minimal measurable length restricts a test particle’s momentum to take a maximal
measurable momentum of the order of the Planck momentum [51–53]. Several interest-
ing and novel results are obtained by considering both a minimal length and a maximal
momentum [40,54–56]. Moreover, when one considers curvature effects, it can be shown
that there is a nonzero minimal uncertainty in momentum measurement too [37,38]. That
is, in large distances, where the curvature of space time becomes important, momentum
cannot be precisely determined. With the path integral formulation, such noncommutative
background geometries can ultraviolet and infrared regularize quantum field theories in ar-
bitrary dimensions through minimal uncertainties both in positions and in momenta (for
more details, see [37,38]). It is important to note that natural cutoffs are essentially related
to the compactness of corresponding symplectic manifold [57]. It is well-known that thermo-
dynamic quantities of a black hole can be obtained by the standard uncertainty principle.
So, in this respect incorporation of the GUP can modify the black hole physics. Recently,
black holes, as a connection between general relativity and quantum mechanics, have been
investigated widely in GUP framework. For instance, the GUP prevents black holes from
total evaporation. Also the GUP modifies Hawking temperature [58]. So, because of the
existence of a maximal temperature originating from minimal length/maximal energy, the
GUP predicts a non-radiating remnant of the order of the Planck mass in the final stage
of evaporation. So, while it provide a possible candidate for dark matter [59], it may be
also a clue for solving the black hole information loss problem and interestingly opens a
realistic door for studying the final stage of black hole evaporation [60–66]. The importance
of the subject lies in the fact that black holes are essentially a quantum gravity object and
therefore GUP as a phenomenological aspect of quantum gravity provides a more realistic
framework to study black hole physics and thermodynamics. This feature has shown its
efficiency in recent years study of black hole physics.

Although the effects of GUP on the thermodynamics and Hawking radiation of a large
number of black holes has been studied in literature, the effect of GUP on the thermodynam-
ics of Horndeski black hole apparently has not attracted attention these years. By recent
advances in Optics of Black Holes via shadow cast of black holes, such as supermassive black
holes attributed to M87 and Sgr A*, it has been opened new windows on the viability of
alternative gravitational theories in one hand and constraining these theories through ob-
servations on the other hand. Therefore, the corrections into Horndeski black hole’s metric
via GUP, essentially provides a tool for constraining the most general scalar-tensor theory
of gravity, Horndeski theory; the issue that has been considered for other types of gravities
and their black hole solutions in the seminal work of Vagnozzi et. al. [67]. In addition,
since Horndeski gravity is the most general scalar-tensor theory of gravity, it is possible
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in principle to find traces of these GUP induced modifications in experiments that will be
designed for testing the role of the scalar degree of freedom. For instance, the status of
the equivalence principle in Horndeski gravity is in principle a tool to check the role of the
scalar degree and may it be capable to give some hints about the tiny quantum gravita-
tional effects encoded in the GUP. It is also important to say that the existence of a scalar
degree of freedom and its derivatives, minimally or non-mibimally coupled to gravity in the
gravitational action, potentially mimics a more realistic black hole system in real world. In
fact, the black holes are objects in a cosmological background which in late time is positively
accelerating due to dark energy/modified gravity. So, it is essentially more reliable to treat
black holes in scalar-tensor theories than the more theoretically simplified cases such as the
Schwarzschild black hole. Albeit, we are aware that this analogy is not perfect since dark
energy is evolving and here, we are dealing with a scalar field out of cosmological dynamics.
But, this study essentially has something to do with these deep concepts. These are actually
some reasons for reliability of such a study.

With this motivations, we adopt Horndeski gravity with phenomenological quantum
gravitational effects to study the black hole thermodynamics. We consider a general-
ized/extended uncertainty relation that includes a minimal length, a minimal momentum
and a maximal momentum to modify the black hole temperature and entropy. Then, by us-
ing the modified black hole temperature, we obtain the modified heat capacity. Finally, we
consider Parikh-Wilczek tunneling process to describe the Hawking radiation emitted from
a Horndeski black hole. We compute tunneling rate and also possible correlation between
emitted modes (particles). To be more clarified, we study possible correlations between the
emitted particles, a feature that can be used by itself to address at least a part of the lost
information in the process of black hole formation. The motivation for performing such a
study in Horndeski framework is the existence of a gap in this respect in literature in one
side, and the fact that Horndeski theory is the most general scalar-tensor theory of gravity
where incorporation of quantum gravitational effects may bring new physics in the realm of
black hole thermodynamics in this framework on the other side.

2 Horndeski Theory

In the modern formulation of the Horndeski gravity, the action takes the following form [17]

S =

∫ √
−gd4x

(
L2 + L3 + L4 + L5 + LbH

4 + LbH
5

)
, (1)

where g ≡ det(gµν) and gµν is the metric tensor. In our case, we investigate a class of
the Horndeski theory which posses shift symmetry, ϕ −→ ϕ + constant,. It includes six
arbitrary functions of the scalar field and its canonical kinetic term which are denoted by ϕ
and X = −∂µϕ∂µϕ/2, respectively. In this notation, we consider G2, G3, G4, G5 for ordinary
Horndesky theory and F4, F5 for beyond Horndeski (bH) theory. These are in the following
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form

L2 = G2, (2)
L3 = −G3□ϕ, (3)
L4 = G4R+G4X [(□ϕ)2 − (∇µ∇νϕ)

2], (4)

L5 = G5Gµν∇µ∇νϕ− 1

6
G5X [(□ϕ)3 − 3□ϕ(∇µ∇νϕ)

2 + 2(∇µ∇νϕ)
3], (5)

LbH
4 = F4ϵ

µνρσϵαβγσ (∇µϕ∇αϕ)(∇ν∇βϕ)∇ρ∇γϕ, (6)
LbH
5 = F5ϵ

µνρσϵαβγδ(∇µϕ∇αϕ)(∇ν∇βϕ)(∇ρ∇γϕ)(∇σ∇δϕ), (7)

where R is the Ricci scalar, and Gµν is the Einstein tensor. For simplicity, in our notation,

□ϕ ≡ gµν∂µνϕ, (∇µ∇νϕ)
2 ≡ ∇µ∇νϕ∇µ∇νϕ, (∇µ∇νϕ)

3 ≡ ∇µ∇νϕ∇ν∇ρϕ∇ρ∇µϕ,

and GX = ∂G(X)/∂X. Obviously, GR and f(R) gravity are the special limits of the
Horndeski gravity which are chosen by G2 = G3 = G5 = 0, G4 = 1/2 and G2 = G3 = G5 =
0, G4 = f(R), respectively.

In our case, we are interested in to investigate the spherically symmetric and static
black hole solutions in shift symmetric Horndeski theories. These black holes are static and
asymptotically flat with a static scalar field [17]. So, the static and spherically symmetric
ansatz for spacetime and scalar field take the following form respectively

ds2 = −f(r)dt2 +
dr2

g(r)
+ r2(dθ2 + sin2θdφ2), (8)

ϕ = ϕ(r).

Also, we set the Gi functions of the Lagrangian as follows

G2 = ηX − 2Λ,

G4 = ζ + γ
√
−X,

G3 = G5 = F4 = F5 = 0, (9)

where η and γ are dimensionless parameters and Λ is the cosmological constant. The first
term of G2 is a canonical kinetic term and the first term of G4 is ζ = M2

Pl/(16π) that yields
an Einstein-Hilbert term in the action. Finally, the action takes the following form [17]

S =

∫
d4x

√
−g

{[
ζ + γ

√
(∂ϕ)2/2

]
R− η

2
(∂ϕ)2 − 2Λ− γ√

2(∂ϕ)2
[(□ϕ)2 − (∇µ∇νϕ)

2]

}
.

(10)
The scalar field can be obtained from the metric and scalar field ansatz as [17]

ϕ
′
= ±

√
2γ

ηr2
√
f
. (11)

For our particular case, the spacetime metric solution takes the following form [17]

f(r) = g(r) = 1− µ

r
− γ2

2ζηr2
− Λ

3ζ
r2. (12)

Explicitly, the solution has the Reissner-Nordström-de sitter (RN+Λ) form. As a conse-
quence of similarity to the RN+Λ form, this solution describes a black hole with mass µ/2
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where µ is a free integration constant and electric charge
√

−γ2

2ζη for spacetime. The param-
eters γ and η unavoidably share the same sign. Additionally, this solution has a coordinate
singularity (singularities) absorbed in the coordinate transformation(s). Finally, identical to
other static solutions, space and time coordinates exchange their roles in the interior of the
black hole. Also, ϕ′ is real for outside of the black hole horizon, f > 0, and imaginary for in-
terior of the black hole horizon, f < 0. Further, the solution (12) with equation (8), recovers
the Reissner-Nordström (RN) metric and the Schwarzschild metric in the limits Λ → 0 and
γ → 0, respectively. Having introduced a particular black hole solution in shift symmetric
Horndeski theory, now we study its thermodynamics in the presence of phenomenological
quantum gravitational effects encoded in a GUP relation.

3 Thermodynamics of Horndeski Black Holes
To incorporate the GUP effects on the black hole thermodynamics, let us start with the
metric to obtain the location of the horizons [68]. The radii of the horizons are determined
by the equation f(r) = 0. In general, this equation has four roots, which we can classify
them as

r1 > r2 > r3 > r4 (13)
The lack of cubic term in equation f(r) = 0 leads to a negative and unphysical root. So, we
have three positive (real) roots that the outermost one is the cosmological horizon while r2
and r3 are event horizon and Cauchy horizon. In the current work, we are only interested
in the event horizon and Caushy horizon which are given by

r+ = −1

2

√
Y +

1

2

√
6ζ

Λ
− Y +

6ζµ

Λ
√
Y
, (14)

r− =
1

2

√
Y − 1

2

√
6ζ

Λ
− Y − 6ζµ

Λ
√
Y
, (15)

where

X =

[
432ζ3η3 − 2592γ2ζη2Λ− 1944ζ2η3Λµ2

+

√[
−4 (36ζ2η2 + 72γ2ηΛ)

3
+ (432ζ3η3 − 2592γ2ζη2Λ− 1944ζ2η3Λµ2)

2
]] 1

3

, (16)

Y =
2ζ

Λ
− 6× 2

1
3 (ζ2η2 + 2γ2ηΛ)

ηΛX
− X

6× 2
1
3 ηΛ

. (17)

In the standard framework, the uncertainty principle can be used to obtain the temperature
and entropy of black hole [69]. So, in the same way the GUP is capable to modify the
temperature and entropy. The black hole thermodynamics in the presence of the GUP are
investigated extensively [60–65]. The uncertainty in the position of an emitted particle in
the Hawking effect is given by

∆x = 2r+ = −
√
Y +

√
6ζ

Λ
− Y +

6ζµ

Λ
√
Y
. (18)
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Also, the uncertainty in the energy of the Hawking particle is

∆E ≈ c∆p ≈ ℏc
∆x

= ℏc

[
−
√
Y +

√
6ζ

Λ
− Y +

6ζµ

Λ
√
Y

]−1

. (19)

In standard cases, the black hole temperature is TBH = κ
2π = T0, where κ and T0 are

the horizon surface gravity and the Hawking temperature, respectively. What is the black
hole temperature in Horndeski theory? For our special case, considering black hole solution
equation (12) yields the standard formula again and there is not any temperature shift (for
more details see [24]). So, the Hawking temperature is associated to the black hole event
horizon radius by

T =
1

4πr+
=

1

2π∆x
. (20)

Using the Hawking temperature, the Bekenstein-Hawking entropy related to the black hole
mass has the following well known form

T =
dE

dS
=

dM

dS
. (21)

Using equation (18), equation (20) and equation (21), we find

S = 2A

(
−
√
Y +

√
6ζ

Λ
− Y +

6ζµ

Λ
√
Y

)−2

×
∫

dM

[
−
√
Y +

√
6ζ

Λ
− Y +

6ζµ

Λ
√
Y

]
, (22)

where A = 4πr2+ is considered as the surface area of the black hole event horizon. Note that
the solution (22) recovers TSch = 4πM2 in appropriate limit where TSch is the entropy of the
Schwarzschild black hole in the standard framework. To incorporate the quantum gravity
effects on the black hole thermodynamics in this shift symmetric Horndeski theory, we take
into account the GUP and develop the study in more details. We consider a generalized
uncertainty principle that includes a minimal length, a minimal momentum and a maximal
momentum. This GUP has the following form [35–38]

∆x∆p ≥ ℏ
[
1− αℓp(∆p) + α2ℓ2p(∆p)2 + β2ℓ2p(∆x)2

]
, (23)

where ℓp is Planck length, α and β are dimensionless parameters which normally are of
the order of unity and depend on the quantum gravity approaches. We note that while
α addresses the existence of the ultra-violet (UV) cutoff, β has the origin on the infra-red
(IR) sector of the underlying quantum field theory. Solving this relation for ∆p gives us the
following momentum uncertainty

∆p

ℏ
=

(αℏℓp + 2r+)

2α2ℏ2ℓ2p

1±

√
1−

4α2ℏℓ2p(ℏ+ 4β2ℏℓ2pr2+)
(αℏℓp + 2r+)2

 . (24)

We can show that this solution has a minimal length, (∆x)min = αℓp, , a minimal momen-
tum, (∆p)min = 2βℓp, and a maximal momentum, (∆p)max ≃ 1

αℓp
with c = 1. Using the

series expansion

∆p

ℏ
=

1

∆x

(
1− αℏℓp

∆x
+

(2α2ℏ2 + β2∆x4)ℓ2p
∆x2

−
αℏ(4α2ℏ2 + β2∆x4)ℓ3p

∆x3

+
3α2ℏ2(3α2ℏ2 + β2∆x4)ℓ4p

∆x4
+O(ℓ5p)

)
, (25)
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and substituting equation (25) into equation (23), we find the GUP corrected position un-
certainty as

∆x′ = ∆x

[(
1− αℏℓp

∆x
+

(2α2ℏ2 + β2∆x4)ℓ2p
∆x2

−
αℏ(4α2ℏ2 + β2∆x4)ℓ3p

∆x3

+
3α2ℏ2(3α2ℏ2 + β2∆x4)ℓ4p

∆x4

)−1

− αℏℓp
∆x

+
α2ℓ2pℏ2

∆x2

(
1− αℏℓp

∆x
+

(2α2ℏ2 + β2∆x4)ℓ2p
∆x2

−
αℏ(4α2ℏ2 + β2∆x4)ℓ3p

∆x3
+

3α2ℏ2(3α2ℏ2 + β2∆x4)ℓ4p
∆x4

)
+ β2ℓ2p∆x2

(
1− αℏℓp

∆x

+
(2α2ℏ2 + β2∆x4)ℓ2p

∆x2
−

αℏ(4α2ℏ2 + β2∆x4)ℓ3p
∆x3

+
3α2ℏ2(3α2ℏ2 + β2∆x4)ℓ4p

∆x4

)−3

− 2ℏαβ2ℓ3p∆x

(
1− αℏℓp

∆x
+

(2α2ℏ2 + β2∆x4)ℓ2p
∆x2

−
αℏ(4α2ℏ2 + β2∆x4)ℓ3p

∆x3

+
3α2ℏ2(3α2ℏ2 + β2∆x4)ℓ4p

∆x4

)−2]
. (26)

So, the modified Hawking temperature for a GUP-corrected Horndeski black hole without
charge can be obtained as follows

T ′ =
1

2π∆x′ = T

[(
1− αℏℓp

∆x
+

(2α2ℏ2 + β2∆x4)ℓ2p
∆x2

−
αℏ(4α2ℏ2 + β2∆x4)ℓ3p

∆x3

+
3α2ℏ2(3α2ℏ2 + β2∆x4)ℓ4p

∆x4

)−1

− αℏℓp
∆x

+
α2ℓ2pℏ2

∆x2

(
1− αℏℓp

∆x
+

(2α2ℏ2 + β2∆x4)ℓ2p
∆x2

−
αℏ(4α2ℏ2 + β2∆x4)ℓ3p

∆x3
+

3α2ℏ2(3α2ℏ2 + β2∆x4)ℓ4p
∆x4

)
+ β2ℓ2p∆x2

(
1− αℏℓp

∆x

+
(2α2ℏ2 + β2∆x4)ℓ2p

∆x2
−

αℏ(4α2ℏ2 + β2∆x4)ℓ3p
∆x3

+
3α2ℏ2(3α2ℏ2 + β2∆x4)ℓ4p

∆x4

)−3

− 2ℏαβ2ℓ3p∆x

(
1− αℏℓp

∆x
+

(2α2ℏ2 + β2∆x4)ℓ2p
∆x2

−
αℏ(4α2ℏ2 + β2∆x4)ℓ3p

∆x3

+
3α2ℏ2(3α2ℏ2 + β2∆x4)ℓ4p

∆x4

)−2]−1

, (27)

where ∆x is given by equation (18) and T is the standard Bekenstein-Hawking temperature.
Figure 1 shows the evolution of the temperature of the black hole versus ∆x. Actually,
the final state of the Hawking evaporation of a black hole in the presence of quantum
gravitational effect, encoded in the GUP, is a black hole remnant. While a Horndeski black
hole in the absence of the GUP corrections evaporates so that its final temperature diverges
in the same manner that happens for the Schwarzschild black hole, for the Horndeski black
hole modified by the GUP, the temperature increases by evaporation of the black hole. This
increment continues up to a maximum temperature and then the temperature reduces to
zero for a black hole remnant of essentially Planck size. So, here there is a difference with
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the Schwarzschild case: As has been shown by Adler et. al. [60], the final state of a GUP-
modified Schwarzschild black hole is a remnant with a non-zero temperature. But here the
final temperature of the GUP-modified Horndeski black hole is a zero-temperature remnant.
Moreover, the behavior of the temperature in terms of the GUP parameters is shown in
Figure 2. It seems that one may obtain a maximum temperature by choosing suitable GUP
parameters. We note that since black hole evaporation in its final stage towards a stable
remnant is essentially a short distance phenomena, the effect of maximal momentum as an
IR effect is not so significance in Figure 2.

Figure 1: Evolution of the temperature of the black hole versus ∆x. The solid line is
the GUP corrected Horndesli black hole temperature and the dashed-dot line is the GUP
corrected Schwarzschild temperature. The constants are considered to be unity.

Now it is possible to calculate the modified entropy from equation (21) as follows

S′(M) = S(M)− 7ℓ5pF (M) +O(ℓ6p), (28)

where F (M) is given by

F (M) =

∫
dM

[
2A
( (

α3β2ℏ3
)(

−
√
Y +

√
6ζ

Λ
− Y +

6ζµ

Λ
√
Y

)−2

+
(
3α5ℏ5

)(
−
√
Y +

√
6ζ

Λ
− Y +

6ζµ

Λ
√
Y

)−6 )]
, (29)

and the surface area of the black hole’s outer horizon is given by

A = 4πr2+ . (30)

We note that the existence of maximal momentum and minimal momentum leads to extra
terms in Hawking temperature and we have both of even and odd powers of Planck length,
ℓp, in comparison to the results reported in [68]. Furthermore, the F (M) term in the (29)
only exists in the presence of the GUP. So, in the absence of GUP, this term vanishes and
equation (29) reduces to the Schwarzschild entropy in the standard framework as is expected.
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Figure 2: Evolution of the temperature of the black hole versus GUP parameters.

3.1 Heat Capacity
The heat capacity of black hole, in the semiclassical approach, can be obtained by the inverse
temperature, T−1 = β = dS

dM . Generally, the heat capacity can be calculated as follows

C =
dM

dT
, (31)

C =
1

πT 2

[
1√
Y

+

(
6ζ

Λ
− Y +

12ζM

Λ
√
Y

)− 1
2
(
1 +

6ζM

ΛY
3
2

)]−1
1

W
, (32)

where W and Z are given by

W =
dY

dX
Z =

[
6× 2

1
3

(
ζ2η2 + 2γ2ηΛ

)
ηΛX2

− 1

6× 2
1
3 ηΛ

]
Z, (33)

and

Z =
dX

dM
=

1

3
X−2

(
15552ζ2η3ΛM +

1

2

[
X3 − 432ζ3η3 − 592γ2ζη2Λ

− 7774ζ2η3ΛM
]−1 [

2
(
432ζ3η3 − 2592γ2ζη2Λ− 7776ζ2η3ΛM

)
15552ζ2η3ΛM

])
. (34)

If we consider the GUP, we get to

C ′ = C

1− 7ℓ5p

 α3β2ℏ3

(−
√
Y +

√
6ζ
Λ − Y + 6ζµ

Λ
√
Y
)
+

3α5ℏ5

(−
√
Y +

√
6ζ
Λ − Y + 6ζµ

Λ
√
Y
)5

2

7ℓ5p
 α3β2ℏ3(

−
√
Y +

√
6ζ
Λ − Y + 6ζµ

Λ
√
Y

)2 +
15α5ℏ5(

−
√
Y +

√
6ζ
Λ − Y + 6ζµ

Λ
√
Y

)6


−1

, (35)
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where C is the standard Bekenstein-Hawking heat capacity. When α and γ, the GUP
parameters tend to zero, equation (35) reduces to equation (32) as would be expected.

The parameter space of the GUP-corrected Horndeski black hole is obviously wider than
the parameter space of the Schwarzschild and also standard Horndeski black hole. So, for a
GUP-corrected Horndeski black hole, it is essentially possible to find some subspaces of the
model parameter space to fulfill the issue of stability. Obviously incorporation of the GUP
shifts the point of phase transition in C-T diagram. So, the simple effect of these correction
is a shift in the temperature of phase transition. On the other hand, this wider parameter
space makes it possible to find more subspaces of the parameter space of the model to fulfill
the stability. We note that the heat capacity in this framework has some discontinuities
versus temperature that reflect essentially the phase transition. However, due to the wide
parameter space of the model it is hard to show these phase transition in a suitable figure.
So, we discarded to present a figure here.

3.2 Tunneling Process
In 1974, Stephen Hawking demonstrated [70] that black holes have an emission spectrum of
a black body nature, the so called Hawking radiation, and so are not purely black. In 2000,
Parikh and Wilczek exhibited [71] a semiclassical method to derive Hawking radiation as a
tunneling process from the event horizon of black hole. In this section, we calculate Hawking
radiation in Parikh-Wilczek tunneling formalism. For this purpose, the coordinate system
should be well-behaved for calculations at the event horizon. So, we define the Painlevé-like
coordinate transformation as follows [72–74]

dtR = dt+ f
′
(r)dr, (36)

where tR is the black hole time coordinate. Substituting equation (36) into equation (8) we
have

ds2 = −∆dt2R +
1

∆
dr2 + r2dΩ2

= −∆dt2 + (−∆f
′2 +

1

∆
)dr2 − 2∆f

′
drdt+ r2dΩ2 , (37)

where for the sake of simplicity we have defined ∆ = 1 − µ
r − γ2

2ζηr2 − Λ
3ζ r

2. Then, f ′
(r)

satisfies
f

′
= ±

√
1−∆

∆
, (38)

and the Painlevé line element and the radial geodesics take the following form respectively

ds2 = −∆dt2 + dr2 ∓ 2
√
1−∆drdt+ r2dΩ , (39)

ṙ =
dr

dt
= ±1∓

√
µ

r
+

γ2

2ζηr2
+

Λ

3ζ
r2. (40)

In this process, that occurs near inside the horizon, the particle with positive energy, w̃,
tunnels out and escapes the event horizon. Considering the energy conservation, the mass
parameter will be replaced with µ → µ − w̃. We can rewrite the new line element and the
radial null geodesics which are respectively as

ds2 = −∆̃dt2 + dr2 ∓ 2
√
1− ∆̃drdt+ r2dΩ , (41)
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and

ṙ =
dr

dt
= ±1∓

√
(µ− ω̃)

r
+

γ2

2ζηr2
+

Λ

3ζ
r2, (42)

where ∆̃ = 1− (µ−ω̃)
r − γ2

2ζηr2 −
Λ
3ζ r

2. To compute the tunneling rate, as a semi-classical pro-
cedure, we consider the Wentzel-Kramers-Brillouin (WKB) approximation. The tunneling
probability is the imaginary part of the action

Γ ∼ exp(−2 ImS). (43)

The imaginary part of the particle action across the event horizon, r+, from initial position,
rin, to the final position, rout, is defined as

ImS = Im
∫ rout

rin

prdr = Im
∫ rout

rin

∫ pr

0

dp̃rdr, (44)

where pr is the canonical momentum of the outgoing particle. By using the Hamilton’s
canonical equation

ṙ =
dH

dpr
=

d(µ− ω̃)

dpr
, (45)

and by substituting equation (45) into equation (44) we get

ImS = Im
∫ rout

rin

∫ ω

0

(−dω̃)dr

ṙ
= Im

∫ rout

rin

∫ ω

0

(−dω̃)dr

1−
√

(µ−ω̃)
r + γ2

2ζηr2 + Λ
3ζ r

2
. (46)

The commutation relation, from the GUP expression, in the presence of minimal length,
minimal momentum and maximal momentum (with ℏ = 1) is

[r, pr] = i
(
1− αℓpp+ α2ℓ2pp

2 + β2ℓ2pr
2
)
. (47)

In the classical limit we can rewrite this relation between the radial coordinate and the
conjugate momentum by poisson bracket

{r, pr} =
(
1− αℓpp+ α2ℓ2pp

2 + β2ℓ2pr
2
)
. (48)

So, we obtain the deformed Hamiltonian equation as follows

ṙ = {r,H} = {r, pr}
dH

dr
. (49)

Finally, we can rewrite the imaginary part of the action in the presence of GUP as follows

Im S = Im
∫ rout

rin

∫ ω

0

ℏ(1− αℓpω̃ + α2ℓ2pω̃
2)

1−
√

(µ−ω̃)
r + γ2

2ζηr2 + Λ
3ζ r

2
(−dω̃)dr

+ Im
∫ rout

rin

∫ ω

0

ℏ(γ2ℓ2pr
2)

1−
√

(µ−ω̃)
r + γ2

2ζηr2 + Λ
3ζ r

2
(−dω̃)dr. (50)

The integral takes the following form up to the second order in lp

ImS ≈ Im
∫ rout

rin

[
2πr − 2αℓpπ

(
µr − r2 +Q2 +

Λr4

3ζ

)
+ 2πα2ℓ2p

[ (
µ2 − 2Q2

)
r − 2µr2

+ 2µQ2 +
2µΛr4

3ζ
+

(
1 +

2Q2Λ

3ζ

)
r3 +Q4 1

r
+

(
Λ

3ζ

)2

r7 +
2Λr5

3ζ

]
+ 2πβ2ℓ2pr

3

]
dr ,

(51)
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where Q = γ2

2ζη . Therefore, the imaginary part of the action takes the following form

ImS ≈ −π
(
r2out − r2in

) [
−1 + αℓpµ− α2ℓ2pµ

2 + 2α2ℓ2pQ
2
]
− 2π

(
r3out − r3in

)
3

[
−αℓp + 2α2ℓ2pµ

]
− 2π (rout − rin)

[
2αℓpQ

2 − 2α2ℓ2pµQ
2
]
− 2π

(
r5out − r5in

)
5

[
αℓp

Λ

3ζ
− 2µΛα2ℓ2p

]
+ 2πα2ℓ2p

Λ

9ζ

(
r6out − r6in

)
− π

(
r4out − r4in

)
2

[
β2ℓ2p − 2α2ℓ2p

Q2Λ

3ζ

]
+ 2πα2ℓ2pQ

4 (ln rout − ln rin) + 2πα2ℓ2p

(
Λ

3ζ

)2 (r8out − r8in
)

8
. (52)

Substituting equation (52) into equation (43), we obtain the tunneling rate at the horizon
as follows

Γ ≈ exp

{
2π
(
r2out − r2in

) [
−1 + αℓpµ− α2ℓ2pµ

2 + 2α2ℓ2pQ
2
]
+ 4π

(
r3out − r3in

)
3

[
−αℓp + 2α2ℓ2pµ

]
+ 4π (rout − rin)

[
2αℓpQ

2 − 2α2ℓ2pµQ
2
]
+ 4π

(
r5out − r5in

)
5

[
αℓp

Λ

3ζ
− 2µΛα2ℓ2p

]
− 4πα2ℓ2p

Λ

9ζ

(
r6out − r6in

)
+ 2π

(
r4out − r4in

)
2

[
β2ℓ2p − 2α2ℓ2p

Q2Λ

3ζ

]
− 4πα2ℓ2pQ

4 (ln rout − ln rin)

− 4πα2ℓ2p

(
Λ

3ζ

)2 (r8out − r8in
)

8

}
= exp (∆SBH) , (53)

where ∆SBH = SBH(µ − ω) − SBH(µ) is the difference in Bekenstein-Hawking entropy
before and after the particles emission at the event horizon. When γ = 0 and Λ = 0, the
result reduces to the Schwarzschild black hole’s result [71,72]. Because of the extra terms in
comparison to the results of [66], the emission spectrum is not purely thermal.

Finally, we calculate the possible correlation between the emitted particles (modes) that
can be obtained by the following relation

χ(E1 + E2;E1, E2) ≡ ln[Γ(E1 + E2)]− ln[Γ(E1)Γ(E2)] , (54)

where ln[Γ(E1)] and ln[Γ(E2)] are the emission rates for the first and second emitted particles
and ln[Γ(E1 + E2)] is the emission rate for a single, composed particle with energy E =
E1 + E2. The emission rate for the first quanta that carries out the energy E1 is given by

ln[Γ(E1)] ≈ 2πr2
[
−1 + αℓp(µ− E1)− α2ℓ2p(µ− E1)

2 + 2α2ℓ2pQ
2
]

+
4πr3

3

[
−αℓp + 2α2ℓ2p(µ− E1)

]
+ 4πr

[
2αℓpQ

2 − 2α2ℓ2p(µ− E1)Q
2
]

+
4πr5

5

[
αℓp

Λ

3ζ
− 2(µ− E1)Λα

2ℓ2p

]
− 4πα2ℓ2p

Λ

9ζ
r6 +

2πr4

2

[
β2ℓ2p − 2α2ℓ2p

Q2Λ

3ζ

]
− 4πα2ℓ2pQ

4 ln r −
4πα2ℓ2pr

8

8

(
Λ

3ζ

)2

. (55)
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Similarly, the emission rate for the second quanta that carries out the energy E2 is as follows

ln[Γ(E2)] ≈ 2πr2
[
−1 + αℓp((µ− E1)− E2)− α2ℓ2p((µ− E1)− E2)

2 + 2α2ℓ2pQ
2
]

+
4πr3

3

[
−αℓp + 2α2ℓ2p((µ− E1)− E2)

]
+ 4πr

[
2αℓpQ

2 − 2α2ℓ2p((µ− E1)− E2)Q
2
]

+
4πr5

5

[
αℓp

Λ

3ζ
− 2((µ− E1)− E2)Λα

2ℓ2p

]
− 4πα2ℓ2p

Λ

9ζ
r6

+
2πr4

2

[
β2ℓ2p − 2α2ℓ2p

Q2Λ

3ζ

]
− 4πα2ℓ2pQ

4 ln r −
4πα2ℓ2pr

8

8

(
Λ

3ζ

)2

. (56)

Now, the emission rate for a single quanta that carries out the energy E1 + E2 is given by

ln[Γ(E1 + E2)] ≈ 2πr2
[
−1 + αℓp(µ− E1 − E2)− α2ℓ2p(µ− E1 − E2)

2 + 2α2ℓ2pQ
2
]

+
4πr3

3

[
−αℓp + 2α2ℓ2p(µ− E1 − E2)

]
+ 4πr

[
2αℓpQ

2 − 2α2ℓ2p(µ− E1 − E2)Q
2
]

+
4πr5

5

[
αℓp

Λ

3ζ
− 2(µ− E1 − E2)Λα

2ℓ2p

]
− 4πα2ℓ2p

Λ

9ζ
r6

+
2πr4

2

[
β2ℓ2p − 2α2ℓ2p

Q2Λ

3ζ

]
− 4πα2ℓ2pQ

4 ln r −
4πα2ℓ2pr

8

8

(
Λ

3ζ

)2

. (57)

The non-zero statistical correlation function can be calculated as

χ(E1 + E2;E1, E2) ≈ (−2πr
2 − 4π

2
r
4
) +

(
8πQ

2
rα −

4

3
πr

3
α +

4πr5αΛ

15ζ
+ 2πr

2
α(µ − E1 − E2)

+
4π2r3(120Q2αζ − 20r2αζ + 4r4αΛ + 30rαζµ − 30rαζE1 − 15rαζE2)

15ζ

)
ℓp

+ (−4 ln rπQ
4
α

2 −
4πr6α2Λ

9ζ
−

πr8α2Λ2

18ζ2
+ πr

4
(β

2 −
2Q2α2Λ

3ζ
)

+ 2πr
2
(−4 ln rπQ

4
α

2 −
4πr6α2Λ

9ζ
−

πr8α2Λ2

18ζ2
+ πr

4
(β

2 −
2Q2α2Λ

3ζ
)

+ 2πr
2
(2Q

2
α

2 − α
2
(µ − E1)

2
) −

8

5
πr

5
α

2
Λ(µ − E1) +

8

3
πr

3
α

2
(µ − E1)

+ 8πQ
2
rα

2
(−µ + E1))

(
8πQ

2
rα −

4

3
πr

3
α +

4πr5αΛ

15ζ
+ 2πr

2
α(µ − E1)

)
(
8πQ

2
rα −

4

3
πr

3
α +

4πr5αΛ

15ζ
+ 2πr

2
α(µ − E1 − E2)

)
−

8

5
πr

5
α

2
Λ(µ − E1 − E2)

+
8

3
πr

3
α

2
(µ − E1 − E2) + 8πQ

2
rα

2
(−µ + E1 + E2) + 2πr

2
α

2
(2Q

2 − (µ − E1 − E2)
2
)

+ 2πr
2
(
− 4 ln rπQ

4
α

2 −
4πr6α2Λ

9ζ
−

πr8α2Λ2

18ζ2
+ πr

4(
β
2 −

2Q2α2Λ

3ζ

−
8

5
πr

5
α

2
Λ(µ − E1 − E2) +

8

3
πr

3
α

2
(µ − E1 − E2) + 8πQ

2
rα

2
(−µ + E1 + E2)

+ 2πr
2
α

2
(2Q

2 − (µ − E1 − E2)
2
)
))

ℓ
2
p + O(ℓ

3
p). (58)

Obviously, the statistical correlation function is not zero. So, black hole radiation is not
purely thermal. Also, existence of the non-zero correlation means that information can
come out during the evaporation process. Since these correlations can store some sort of
information, so these correlations are capable to address at least part of the lost information
in essence.

It is important to point that these correlations are essentially quantum mechanical in
nature and usually are spatial/temporal correlations. But here, the spatial correlations of
these successive emitted modes (particles) is considered. These correlations are correlation
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between two successive particles emitted via Hawking radiation and it is obvious, it is a
function of the energies of the emitted particles, the radial coordinate, the GUP parameters
and also the Horndeski gravitational theory.

4 Discussion
While the issue of black hole thermodynamics in the framework of the generalized/extended
uncertainty relations has been studied widely in literature, the issue of Horndeski black holes’
thermodynamics in the framework of GUP/EUP has been overlooked in literature. On the
other hand, Horndeski theory provides the most general framework for scalar-tensor theories
of gravity. For the reasons, we have stated in Introduction, in this paper we have focused on
the thermodynamics of shift symmetric Horndeski black hole solutions in the framework of
phenomenological quantum gravity corrections encoded in a class of generalized/extended
uncertainty relation. We obtained in details the temperature and then the heat capacity of
such a black hole that recovers the standard Schwarzschild, Reissner-Nordström or Reissner-
Nordström-de sitter solutions in the appropriate limits. While a Horndeski black hole in the
absence of the GUP corrections evaporates so that its final temperature diverges in the
same manner that happens for the Schwarzschild black hole, for the Horndeski black hole
modified by the GUP, the temperature increases by evaporation of the black hole. This
increment continues up to a maximum temperature and then the temperature reduces to
zero for a black hole remnant of essentially Planck size. Then, the issue of Hawking radiation
as a semi-classical tunneling from the event horizon has been studied in details. For this
purpose, the imaginary part of the classical action has been calculated within the WKB
approximation. The issue of possible correlations between the emitted modes (particles) has
been treated carefully and it is shown that these correlations are not vanishing, leading to the
conclusion that part of the lost information may be stored in these quantum gravitational
correlations. It is important to note that we focused mainly on the near, “event” horizon
calculations. There is in fact some correlations between the various horizons of these multi-
horizon geometry [75] and these correlations should be taken into account in a more realistic
and concrete study. We leave this issue for our forthcoming study.
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