On the Nature of Kink MHD Waves, Vorticity and Compressibility Versus Restoring Forces

Document Type : Research Paper

Author

Physics Department, Faculty of Science, Razi University, Kermanshah, Iran

Abstract

In order to study the nature of kink MHD waves, zero beta plasma in a thin twisted magnetic-flux tube is considered. We use two parameters, the ratio of restoring forces and the ratio of the parallel vorticity to the compressibility to study the effect of magnetic twist on the nature of kink waves. Our aim is to invstigate whether the nature of the wave obtained from studying these two parameters are the same or not. The two parameters give two different twist parameters in which the wave becomes purely Alfvénic. The first parameter indicates that both in the internal and external regions
of the tube, the wave can become purely magnetoacostic but the second parameter indicates that the wave can become magnetoacostic only in the external region of the tube. Our conclusion is that the two parameters are not equivalent for determining the nature of the wave.

Keywords


[1] Aschwanden, M. J., Fletcher, L., Schrijver, C. J., & Alexander, D. 1999, Astrophys. J., 520, 880.
[2] Bahari, K. 2017, Solar Phys., 292, 110.
[3] Bahari, K. 2018, ApJ, 864, 2.
[4] Bahari, K. 2018, New Astronomy, 61, 30.
[5] Bahari, K. 2021, Solar Phys., 296, 126.
[6] Bahari, K., & Ebrahimi, Z. 2020, Mon. Not. Roy. Astron. Soc., 497, 1135.
[7] Bahari, K., & Jahan, Z. 2020, ApJ, 901, 28.
[8] Bahari, K., & Khalvandi, M. R. 2017, Solar Phys., 292, 192.
[9] Bahari, K., Petrukhin, N. S., & Ruderman, M. S. 2020, MNRAS, 496, 67.
[10] Bennett, K., Roberts, B., & Narain, U. 1999, Solar Phys., 185, 41.
[11] Carter, B. K., & Erdélyi, R. 2007, Astron. Astrophys. 475, 323.
[12] De Pontieu, B., McIntosh, S. W., Carlsson, M., Hansteen, V. H., Tarbell, & et al. 2007, Science, 318, 1574.
[13] Ebrahimi, Z., & Bahari, K. 2019, Mon. Not. Roy. Astron. Soc., 490, 1644.
[14] Ebrahimi, Z., & Karami, K. 2016, Mon. Not. Roy. Astron. Soc., 462, 1002.
[15] Ebrahimi, Z., Karami, K., & Soler, R. 2017, Astrophys. J., 845, 86.
[16] Goossens, M. L., Arregui, I., & Van Doorsselaere, T. 2019, Front. Astron. Space Sci., 6, 20.
[17] Goossens, M., Terradas, J., Andries, J., Arregui, I., & Ballester, J. L. 2009, Astron. Astrophys., 503, 213.
[18] Karami, K., & Bahari, K. 2010, Solar Phys., 263, 87.
[19] Karami, K., & Bahari, K. 2012, Astrophys. J., 757, 186.
[20] Lopin, I., & Nagorny, I. 2017, Astrophys. J., 840, 26.
[21] Nakariakov, V. M., Ofman, L., DeLuca, E. E., Roberts, B. R., & Davila, J. M. 1999, Science, 285, 862.
[22] Okamoto, T. J., Tsuneta, S., Berger, T. E., Ichimoto, K., Katsukawa, Y., & et al. 2007, Science, 318, 1577.
[23] Ruderman, M. S. 2007, Solar Phys., 246, 119.
[24] Ruderman, M. S. 2015, Astron. Astrophys., 575, A130.
[25] Ruderman, M. S., & Roberts, B. 2002, Astrophys. J., 577, 475.
[26] Sakurai, T., Goossens, M., & Hollweg, J. V. 1991, Solar Phys., 133, 227.
[27] Van Doorsselaere, T., Nakariakov, V. M., & Verwichte, E. 2008, Astrophys. J., 676, L73.