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Abstract. In order to study the nature of kink MHD waves, zero beta plasma in a thin
twisted magnetic-flux tube is considered. We use two parameters, the ratio of restoring
forces and the ratio of the parallel vorticity to the compressibility to study the effect of
magnetic twist on the nature of kink waves. Our aim is to invstigate whether the nature
of the wave obtained from studying these two parameters are the same or not. The
two parameters give two different twist parameters in which the wave becomes purely
Alfvénic. The first parameter indicates that both in the internal and external regions
of the tube, the wave can become purely magnetoacostic but the second parameter
indicates that the wave can become magnetoacostic only in the external region of the
tube. Our conclusion is that the two parameters are not equivalent for determining the
nature of the wave.
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1 Introduction
In the last years, many examples of magnetohydrodynamic (MHD) waves have been detected
in the solar atmosphere using instruments with high resolution. Now, we know that MHD
waves are present always and everywhere in the solar atmosphere. Much attempts have
been made to study and classify these waves both theoretically and numerically in the
inhomogeneous solar atmosphere. In an unbounded and infinite plasma, MHD oscillations
are classified into three fundamental types: fast and slow magneto-acoustic waves and Alfvén
waves, but in the highly inhomogeneous solar atmosphere a rich variety of modes can exist
in the magnetic loops, filaments, etc. Some authors argue that the physical differences
between these waves are the restoring forces acting on plasma during the oscillation. Van
Doorsselaere et al. (2008) have discussed the observational evidences of kink MHD waves
and Alfvén waves.

Aschwanden et al. (1999) and Nakariakov et al. (1999) for the first time reported
transverse perturbations in coronal flux loops, triggered by solar flares and argued that these
are fast kink waves. De Pontieu et al. (2007) investigated Hinode data and found Alfvén
perturbations in the solar atmosphere; they found that Alfvén oscillations can permeate
the solar corona and have significant energy to supply the solar corona with the required
energy for solar wind and probably heating of the quiet corona. Also, Okamoto et al.
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(2007) studied Hinode data and found propagating Alfvén waves in the solar corona and
without introducing any damping mechanism they concluded that Alfvén waves may have
a significant role in coronal heating. Resonant absorption is just the mechanism that causes
the rapid damping of coronal waves. In the presence of magnetic twist, spatial damping of
propagating MHD kink waves has been investigated by Bahari (2018) and temporal damping
of propagating MHD kink waves has been studied by Ebrahimi and Bahari (2019) and
Bahari, Petrukhin and Ruderman (2020). In order to determine the nature of the kink
waves, Goossens et al. (2009) investigated the restoring forces in kink oscillations and found
that in the inhomogeneous layer the gradient of the magnetic pressure is negligible and
concluded that the suitable adjective for the kink waves is Alfvénic. Later, based on the
investigation of restoring forces, the nature of MHD waves under various circumstances has
been studied studied by Bahari and Khalvandi (2017) (hereafter paper I), Bahari (2018),
Bahari and Ebrahimi (2020) and Bahari (2021). Goossens Arregui and Van Doorsselaere
(2019) studied the nature of MHD waves based on the comparison of the parallel vorticity
and compressibility of the environment.

Kink MHD waves in a magnetically twisted flux tube have been studied by some authors
e.g. Bennett, Roberts, and Narain (1999), Carter and Erdély (2007), and Karami and
Bahari (2010). Ruderman (2007) studied the kink oscillations of a stratified and twisted
magnetic-flux tube. He found that the magnetic twist does not affect kink waves. Karami
and Bahari (2012) used the the method suggested by Ruderman (2007) and concluded that
in the twisted coronal loops the period ratio of the fundamental to first harmonic kink wave
decreases; later Bahari (2017) and Bahari and Jahan (2020) studied the oscillation properties
of standing kink waves of a flux tube in the presence of both magnetic twist and flow and
concluded that the eigenfunctions can be essentially modified by plasma flow and magnetic
twist. Lopin and Nagorny (2017) studied the propagation of kink oscillations in a stratified,
non-isothermal and magnetically twisted tube. They found that the magnetic twist increases
the vertical energy flux of the kink waves which has positive azimuthal mode number while
decreases it for the kink oscillations which has negative azimuthal mode number.

In this article, we compare the results of studying the nature of the kink MHD waves
based on the investigation of restoring forces and parallel vorticity and compressiblity of
the environment. We examine whether the results obtained from two methods are the same
or not. To do this, we consider the model studied in paper I and study the nature of the
kink wave based on the investigation of the parallel vorticity and compressibility of the
environment, and compare our results with the results determined in paper I. In the next
section, we introduce the loop model, in Section 3, we derive the plasma displacement and
restoring forces and study the force ratio, parallel vorticity and compressibility of the wave
for various tube parameters, and Section 4 is devoted to conclusions.

2 The model of the tube and governing equations
We model a magnetic flux tube as a thin straight tube with circular cross section in a
pressureless medium. Circular coordinate system is used for studying the oscillations of
the coronal loop. The z-axis has been assumed to coincide with the axis of the loop and
the boundary of the tube is denoted by r = a. The plasma densities of the tube (internal
region) (ρi) and the environment (external region) (ρe) are assumed to be constant and
plasma density in the internal region is larger than the plasma density in external region.
For simplicity, and because we are not interested in wave damping, we consider a step-
function profile for the plasma density. In addition to z component of the magnetic field,
we consider a small azimuthal component too both in internal and external regions of the
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tube. For simplicity, we consider an equilibrium magnetic field which is called uniformly
twisted magnetic field and the azimuthal component of the background magnetic field is
proportional to r

B =
(
0, Ar,Bz(r)

)
. (1)

Here, A is the twist parameter and Bz(r) must be determined from the equilibrium condition
of the tube. This model has been investigated earlier paper I and also in an incompressible
medium by Karami and Bahari (2010), with the difference that they assumed the longitu-
dinal magnetic field Bz to independent of r.

The azimuthal magnetic field introduces a magnetic-tension force which is in the negative
r-direction. In order to have a balance between radial forces in background model, the
magnetic-tension force induced by magnetic twist is canceled by a gradient force of the
magnetic pressure which is induced by the variation of magnetic field; hence, the magnitude
of the magnetic field must be a decreasing function of r. From these considerations the
equilibrium condition can be written which gives the axial component of the magnetic field
as

B2
z (r) = A2

(
a2 − 2r2

)
+B2

0 , (2)

here B0 is an integration constant.
In the linear regime the small perturbations of the tube are given by these equations

ρ
∂2ξ

∂t2
=

1

4π

[
(b · ∇)B + (B · ∇)b

]
− 1

4π
∇(B · b), (3)

∂b
∂t

= ∇× (
∂ξ

∂t
× B). (4)

In these equations, b denotes the magnetic field perturbations and ξ represents the plasma
displacement. Since the background of the tube is independent of z, ϕ, and t, the dependence
of all perturbations on these variables can be Fourier-analyzed, hence, they can be considered
proportional to ei(mϕ+kz−ωt). Here, m is the wave number associated with the ϕ coordinate,
and can take 0,±1,±2, . . . . Here, in the case of kink waves, we consider the values ±1 for m.
The axial wave number is denoted by (k). Our formalism here is relevant for the thin-tube
approximation as a result we assume ka = π

100 .
Using the perturbation theory suggested by Ruderman (2007) and later used by Karami

and Bahari (2012), equations (3) and (4) can be solved to obtain the perturbations of
magnetic pressure p = b·B/4π and the radial displacement in both the internal and external
regions of the tube.

ξr(r) =

{
βr|m|−1, r < a,

αr−|m|−1, r > a,
(5)

p(r) =


(

1
|m| (ρiω

2 − f2

4π ) +
Af
2πm

)
βr|m|, r < a,

−
(

1
|m| (ρeω

2 − f2

4π )−
Af
2πm

)
αr−|m|, r > a.

(6)

In these equations, β and α are constants which their ratio can be obtained from the relevant
boundary conditions, and f = mA + kB0. Using the relevant boundary conditions of the
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tube oscillations, i.e. the continuity of pressure perturbations p(r) and ξr(r), the oscillation
frequency of kink waves is determined

ω =
|f |√

2π(ρi + ρe)
. (7)

We have assumed the coronal-loop model here to investigate the nature of the kink oscilla-
tions. Here, we are not interested in studying resonant absorption of the waves. Resonant
absorption of the kink waves has been studied by Goossens et al. (2009), Ruderman and
Roberts (2002), Ruderman (2015) and Ebrahimi and Karami (2016). In the model consid-
ered in this paper, the Alfvén frequency (ωA = f/

√
4πρ) is piecewise constant as a result we

have no Alfvén continuum, hence, resonant absorption does not occur; anf the oscillation
frequency obtaine in equation (7), is a real quantity.

3 Restoring forces, parallel vorticity and compressibilty
The nature of kink oscillations is studied by the restoring forces of the oscillations. These
are given by equation (3). It has two terms, the gradient of magnetic pressure force,

F = −∇⊥p = −∇p+ l̂t
dp

ds
= −∇p+

ikp(ẑ +Ar/B0ϕ̂)√
1 + (Ar/B0)2

, (8)

and the magnetic-tension force

.

Π =
1

4π

[
(B · ∇)b + (b · ∇)B

]
− l̂t

dp

ds

=
1

4π

[
(B · ∇)b + (b · ∇)B

]
− ikp(ẑ +Ar/B0ϕ̂)√

1 + (Ar/B0)2

(9)

In these equations, the operator ∇⊥ denotes the gradient operator in the direction perpen-
dicular to the background magnetic-field lines and l̂t and s are the unit vector and length
along the magnetic-field lines respectively.

We can use equation (4) to obtain all the three components of the magnetic field pertur-
bation in terms of the plasma displacement components

br = ifξr

bϕ = ifξϕ −Ar∇ · ξ
bz = ifξz −Bz(r)∇ · ξ.

(10)

This result can be Substituted in equation (3) which after some manipulation both ξϕ and
ξz are determined in terms of ξr and p(r)

ξϕ =
1

i( f
2

4π − ρω2)

(
(
m

r
− fAr

B(r)2
)p(r) +

fA

2π
(
A2r2

B(r)2
− 1)ξr

)
, (11)

ξz =
1

i( f
2

4π − ρω2)

(
(kz −

fBz(r)

B(r)2
)p(r) +

fBz(r)A
2r

2πB(r)2
ξr

)
, (12)

then, substituting the perturbations to the magnetic field from equation (10) into equation
(9), the magnetic-tension force are obtained in terms of radial displacement and perturbed
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Figure 1: The ratio of the parallel vorticity to the compressibility of the medum i.e. i(∇×
ξ)∥/∇ · ξ as a function of the dimensionless twist parameter Aa/B0. The red-dashed line
corespond to the internal region of the tube and is calculated in r = 0.5a while the blue-solid
is for the external region of the tube and is calculated in r = 1.5a. The parameters of the
tube are m = −1, ρe = ρi/5, L = 100a and k = π/L

magnetic pressure,

Πr =
1

4π
(−f2ξr − iAfξϕ +A2r∇ · ξ), (13)

Πϕ =
1

4π
(iAfξr − f2ξϕ − iAfr∇ · ξ)− ikpAr/B0√

1 + (Ar/B0)2
. (14)

With the use of equations (11) and (12) the magnetic-tension force can be written in terms
of the perturbed magnetic pressure and radial component of displacement, and finally using
equations (5) and 6 it can be obtained as a function of r.

In Figure 1, the ratio of the parallel vorticity to the compressibility of the medum i.e.
i(∇×ξ)∥/∇·ξ is plotted as a function of the dimensionless twist parameter Aa/B0. Since this
quantity is almost independent of r, we have not ploted it versus the radial coordinate. In
this figure, the red-dashed line corespond to the internal region of the tube and is calculated
in r = 0.5a while the blue-solid is for the external region of the tube and is calculated
in r = 1.5a. In Figure 2, the ratio of radial forces |Πr/Fr| is plotted as a function of the
dimensionless twist parameter Aa/B0. Also this quantity is almost independent of r, we have
not ploted it versus the radial coordinate. In this figure too, the red-dashed line corespond
to the internal region of the tube and is calculated in r = 0.5a while the blue-solid is for the
external region of the tube and is calculated in r = 1.5a.

The quantities represented in Figures 1 and 2 are different quantities and in general it is
not necessary that the diagrams in these two figures be the same. But since these two figure
represent the nature of the same wave expect some similarities in these figures. In particular,
if the results of one of the diagrams conclude that under some conditions the wave is purely
Alfvénic (magnetoacoustic) then, the other figure too must give the same conclusion. But
surprisingly this is not the case! For example Figure 1 shows that for Aa/B0 = 0.011 the
wave becomes purely Alfvénic both inside and out side the tube, but Figure 2 shows that
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Figure 2: The ratio of radial forces |Πr/Fr| is plotted as a function of the dimensionless
twist parameter Aa/B0. The red-dashed line correspond to the internal region of the tube
and is calculated in r = 0.5a while the blue-solid is for the external region of the tube and
is calculated in r = 1.5a. The parameters of the tube are the same as those in Figre 1.

this happens for Aa/B0 = 0.008. Also, it is clear from Figure 1 that for two values of the
twist parameter 0.005 and 0.0095 the parallel vorticity becomes negligible relative to the
compressibility, in the internal and external region respectively, hence the wave becomes
purely magnetoacoustic under this conditions, while Figure 2 that this occurs only for the
external region for the twist parameter 0.0105.

4 Conclusions

The zero beta plasma in a thin and magnetically twisted magnetic-flux tube is considered.
The MHD equations in the linear regime have been solved to determine the oscillation
frequency, the perturbations to magnetic pressure and plasma displacement of the loop. For
different tube parameters, the restoring forces loop, which are the gradient of perturbed
magnetic pressure and magnetic-tension force, the parallel vorticity and comprressibility
have been obtained as a function of r.

The nature of the kink waves has been studied by investigating two parameters, the first
parameter is the ratio of parallel vorticity to the compressibility and the second parameter
is the ratio of restoring forces. Surprisingly, the results which are obtained from investi-
gating the two parameters are different from each other considerably. The two parameters
give two different twist parameters in which the wave becomes purely Alfvénic. The first
parameter indicates that both in the internal and external regions of the tube the wave
can become purely magnetoacostic but the second parameter indicates that the wave can
become magnetoacostic only in the external region of the tube. Our conclusion is that the
two parameters are not equivalent for determining the nature of the wave.
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