Quantum Thermodynamic Properties of a Moving Particle Next to a Surface in the Presence of Electromagnetic Field

Document Type : Research Paper

Author

Department of Physics‎, ‎Faculty of Science‎, ‎Imam Khomeini International University‎, ‎P.O.Box 34148-96818‎, ‎Qazvin‎, ‎Iran

Abstract

In this paper, we investigate the effect of the motion of a magnetodielectric particle on the quantum thermodynamic properties of a system. Specifically, we study the behavior of a polarizable and magnetizable dielectric particle moving above a semi-infinite bulk dielectric in the presence of an electromagnetic field. Using a microscopic approach, we propose a covariant Lagrangian for the combined system and obtain a dynamical covariant response of the moving particle. We calculate the emitted power from the work extracted by the electric and magnetic dipoles of the moving particle. We explicitly determine the behavior of the main thermodynamic functions of the system, including thermal correlation functions, free energy, mean energy, entropy, and heat capacity. It is found that the thermodynamic properties of the moving particle in the electromagnetic field depend on the properties of the semi-infinite bulk dielectric. Moreover, we demonstrate that the formulation of quantum thermodynamics for an electromagnetic system in uniform relative motion differs from its formulation in the rest-frame.

Keywords


[1] Qi, W. 2016, Accounts of Chemical Research, 49, 1587.
[2] Dill, K. A., Bromberg, S., & Stigter, D. 2006, Molecular driving forces: statistical thermodynamics in biology, chemistry, physics, and nanoscience. Garland Science.
[3] Taubner, T., Korobkin, D., Urzhumov, Y., Shvets, G., & Hillenbrand, R. 2006, Science, 313, 1595.
[4] Goms, S., Assy, A., & Chapuis, P. O. 2015, physica status solidi (a), 212, 477.
[5] Abramson, A. R., & Tien, C. L. 1999, Microscale thermophysical engineering, 3, 229.
[6] Jafari, M. 2021, The European Physical Journal Plus, 136, 1.
[7] Jafari, M. 2021, Laser Physics, 31, 085204.
[8] Hoseinzadeh, M., Amooghorban, E., Mahdifar, A. & Nafchi, M. A. 2020, Physical Review A, 101, 043817.
[9] Sommerfeld, A. 1964, Electrodynamics, Academic, New York.
[10] Strekalov, D., Matsko, A. B., Yu, N., & Maleki, L. 2004, Physical review letters, 93, 023601.
[11] Artoni, M., Carusotto, I., La Rocca, G. C., & Bassani, F. 2001, Physical review letters, 86, 2549.
[12] Nag, B. D and Sayied, A. M, 1956, Proc. R. Soc. London, Ser. A, 235, 544.
[13] Kong, J. A. 1975, Theory of ElectromagneticWaves. Wiley, New York.
[14] Jauch, J. M., & Watson, K. M. 1948, Physical Review, 74, 950.
[15] Horsley, S. A. R. 2012, Physical Review A, 86, 23830.
[16] Wang, Y., Liu, Z. K., & Chen, L. Q. 2004, Acta Materialia, 52, 2665.
[17] DeHoff, R. 2006, Thermodynamics in Materials Science, 2nd ed., CRC Press.
[18] Gaskel, D. R., & Laughlin, L. D. E. 2018, Introduction to the Thermodynamics of Materials, 6nd ed., CRC press.
[19] Oliveira, R. R. S., & Arajo Filho, A. A. 2020,The European Physical Journal Plus, 135, 1.
[20] Ameri, V., Aporvari, M. S., & Kheirandish, F. 2015, Physical Review A, 92, 022110.
[21] Refaei, A., & Kheirandish, F. 2016, International Journal of Theoretical Physics, 55, 432.
[22] Philbin, T. G. 2012, New Journal of Physics, 14, 083043.
[23] Kheirandish, F., & Ameri, V. 2014, Physical Review A, 89, 032124.
[24] Jafari, M. 2021, The European Physical Journal Plus, 136, 1151.