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Abstract. In this paper, we investigate the effect of the motion of a magnetodielectric
particle on the quantum thermodynamic properties of a system. Specifically, we study
the behavior of a polarizable and magnetizable dielectric particle moving above a semi-
infinite bulk dielectric in the presence of an electromagnetic field. Using a microscopic
approach, we propose a covariant Lagrangian for the combined system and obtain a
dynamical covariant response of the moving particle. We calculate the emitted power
from the work extracted by the electric and magnetic dipoles of the moving particle. We
explicitly determine the behavior of the main thermodynamic functions of the system,
including thermal correlation functions, free energy, mean energy, entropy, and heat
capacity. It is found that the thermodynamic properties of the moving particle in
the electromagnetic field depend on the properties of the semi-infinite bulk dielectric.
Moreover, we demonstrate that the formulation of quantum thermodynamics for an
electromagnetic system in uniform relative motion differs from its formulation in the
rest-frame.

Keywords: Thermal corralation function, Quantum Electrodynamics, Moving particle,
Mean energy

1 Introduction
Recent progress in nanotechnology and nanoscale devices, such as scanning thermal micro-
scopes, has raised questions about quantum thermodynamics and near-field effects [1–3]. In-
vestigating the quantum thermodynamic properties of static nanoscale effects has attracted
a lot of interest. Additionally, studying the effect of motion on quantum thermodynamic
properties can be interesting in many branches of science, such as detectors and thermome-
ters. Quantum thermodynamic properties of two objects, such as a microscope’s tip near a
substrate, are among the challenging problems [4,5].

Macroscopic electromagnetism is a fundamental part of theoretical physics, providing
a detailed description of light-matter interactions. Studying the quantum thermodynamic
properties of this kind of system is an attractive field that can appear in many branches
of physics, such as the quantum thermometer, ion trapping, and optical trapping [6,7].
The electrodynamics of moving media is a fundamental subject, and a covariant theory
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of electrodynamics in moving media was presented by Minkowski using Einstein’s special
relativity theory [8,9]. The electrodynamics of moving media has been applied in various
physical fields, such as the optics of moving media [10,11], radiation of fast charged particles
in media [12], and astrophysics [13].

The quantization of the electromagnetic field in moving media has been investigated
by Jauch and Watson [14]. After that, Horsley developed a canonical theory that includes
dispersive and dissipation effects [15].

Studying the macroscopic electromagnetic system focusing on its thermodynamic prop-
erties is of great interest in quantum optics, solid-state physics, and material science [16–18].
Many applications of quantum electrodynamics in dielectric media require a quantum ther-
modynamics description for the electromagnetic field interacting with the matter field [19].
The lack of a straightforward useful method for measuring thermodynamic quantities in
moving systems in the presence of electromagnetic fields encourages us to investigate this
subject.

In this paper, based on a microscopic approach, we propose a Lagrangian for the com-
bined system of a moving dielectric particle next to the semi-infinite bulk dielectric in the
presence of electromagnetic vacuum fluctuation. The Lagrangian describing the whole sys-
tem is the Lagrangian of the electromagnetic vacuum field plus terms modeling the moving
particle and semi-finite dielectric and their interaction with the electromagnetic field [20,21].
The moving particle and the semi-infinite bulk interact with the electromagnetic vacuum
field indirectly. The particle and semi-infinite dielectric are described by covariant fields. In-
spired by the Caldeira-Leggett model, we modeled fields as a continuum of the Klein-Gordon
field [6]. The coupling tensors couple the electromagnetic field to the magneto-dielectric par-
ticle and bulk dielectric. The coupling tensors play a vital role in the canonical quantization
scheme, and the susceptibility tensor of the particle is expressed in terms of the coupling
tensor. The moving particle produces electric and magnetic moments that can interact
with the electric and magnetic components of the electromagnetic field. The Hamiltonian is
diagonalized by the Fano model [22], a simple model describing the interaction of the elec-
tromagnetic field with a medium. A benefit of diagonalization of the Hamiltonian is that it
allows for a straightforward calculation of thermodynamic quantities for the moving particle.
We assume thermal equilibrium for all couplings, which makes diagonalization valid. Next,
we obtain thermal correlation functions and the main thermodynamic functions, including
free energy, mean energy, entropy, and heat capacity.

The aim of this work is to investigate the quantum thermodynamic properties of a mov-
ing dielectric particle above a plane interface in the framework of covariant canonical field
quantization approach. The particle could be a photon detector placed outside of the mate-
rial. The layout of the paper is as follows: In Section 2, a covariant Lagrangian for the total
system is proposed, and using Euler-Lagrange equations, the equation of motion for moving
nanoparticle above a semi-infinite dielectric is obtained in the presence of electromagnetic
field. The total system is canonically quantized in section 3, and the Hamiltonian is di-
agonalized using the Fano diagonalization technique. In Section 4, the thermal correlation
functions of dynamical variables, the thermal expectation value of the moving nanoparticle,
mean force thermal energy, and free energy are obtained. Finally, the conclusion is given in
section 5.

2 Lagrangian
The system under consideration is a moving dielectric particle interacting with an electro-
magnetic field in the presence of a semi-infinite bulk dielectric. The moving dielectric particle
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and the semi-infinite bulk dielectric are defined by real vector fields Xµ,ω(x, t) and Yµ,ω(x, t),
respectively, which are assumed to be a continuum of real Klein-Gordon fields. Throughout
the article, we assume that the fields are defined in (1 + 3)-dimensional space-time. The
covariant Lagrangian density for the system is given by the following expression

LEM =
1

2
∂µAν∂

µAν ; (1)

Ls =
1

2

∫ ∞

0

dω[(γvα∂
αXµ,ω(x, t))(γv

β∂βX
µ
ω(x, t))− ω2Xµ,ω(x, t)X

µ
ω(x, t)], α = β

(2)

Lenv =
1

2

∫ ∞

0

dω(∂µY
µ(x, t)∂ζYζ(x, t)− ω2

0Yµ(x, t)Y
µ(x, t)), µ = ζ (3)

Lint =

∫ ∞

0

dωXµ,ω(x, t)fµ,ν(ω, t)∂αAν(x, t) +

∫ ∞

0

dωYµ,ω(x, t)gµ,ν(ω)∂αAν(x, t) (4)

The first term, LEM , is the covariant form of the Lagrangian density of the electromagnetic
field. The second term is the covariant Lagrangian density of the moving particle, which is
modified due to the Lorentz transformation of the time coordinate. The third term is the
Lagrangian density of the bulk dielectric, and the last term is the interaction between the
moving dielectric particle and the electromagnetic field, as well as the interaction between
the bulk dielectric and the electromagnetic field. The velocity component of the moving
particle is denoted by vα, and γ = 1√

1− v2

c2

. The second-order coupling tensor between

the particle’s field and electromagnetic field, fµν , is time-dependent due to the motion of
the particle, whereas the coupling tensor gµν between the electromagnetic field and static
dielectric Yω is time-independent.

Dielectrics are considered anisotropic and homogeneous, and we define
PA(x, t) =

∫
dωXµ

ω(x, t)fµν(ω, t) and PB(x, t) =
∫
dωY µ

ω (x, t)gµν(ω) as the polarization
components of the moving dielectric particle and semi-infinite bulk dielectric, respectively.
The classical equation of motion from Euler-Lagrange equations for Aµ, Xω, and Yω is
obtained as follows.

− ∂µ∂
µAν = ∂µ[PA(x, t) + PB(x, t)], (5)

[γ2vαvβ∂
α∂β + ω2]Xω,µ(x, t) = fµ,ν(ω)∂αA

ν(x, t), (6)

(∂ν∂
ν + ω2

0)Yω,µ(x, t) = gµ,ν(ω)∂αA
ν(x, t). (7)

For simplicity, we work in the reciprocal space, and the equation of motion is written in
terms of spatial Fourier transforms. So, the equations of motion for the electromagnetic
field, moving dielectric particle, and bulk dielectric field are derived as follows

(∂2
t + k2)Aµ(k, t) = (∂t − k∗)(PA(k, t) + PB(k, t)), (8)

[∂2
t +Ω2(k, ω)]Xωµ(k, t) =

fµ,ν(ω)

γ2
(∂tAν(k, t) + k×Aν(k, t)), (9)

where Ω(k, ω) =
√
v2k2 + ω2

γ2 , and

[∂2
t +Ω′2(k, ω)]Yωµ(k, t) = gµ,ν(ω)∂tA

ν(k, t), (10)
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where Ω′2(k, ω) = k2 + ω2
0 . The general solution of the moving dielectric particle field is

Xµ,ω(k, t) = XN
µ,ω(k, t)+

fµ,ν(ω)

γ2Ω(k, ω)

∫ t

0

dt′(∂tA
ν(k, t′)+(k×A)ν) sinΩ(t−t′)e−0+(t−t′) (11)

The fluctuating field XN is the homogeneous solution of the equation of motion for the
particle field,

XN
µ,ω(k, t) = Ẋµ,ω(k, 0)

sin(Ωt)

Ω(k, ω)
+Xµ,ω(k, 0) cos(Ωt). (12)

The formal solution of the equation (10) is

Yµ,ω(k, t) = Y N
µ,ω(k, t) + gµ,ν(ω)

∫ t

0

dt′∂tA
ν(k, t′) sinΩ′(t− t′)e−0+(t−t′). (13)

The fluctuating field YN is the homogeneous solution of the equation of motion for the bulk
dielectric field,

Y N
µ,ω(k, t) = Ẏµ,ω(k, 0)

sin(Ω′t)

Ω′(k, ω)
+ Yµ,ω(k, 0) cos(Ω

′t). (14)

In the frequency domain, (11) and (13) are

Xµ,ω(k, ω
′) =π(Xµ,ω(k, 0) + i

Ẋµ,ω(k, 0)

Ω
)δ(Ω− ω′)

+ π(Xµ,ω(k, 0)− i
Ẋµ,ω(k, 0)

Ω
)δ(Ω + ω′)

+P
fµ,ν(ω)

γ2

ω′Aν(k, ω
′) + (k×A(k, ω′))ν
Ω2 − ω′2

+
fµ,ν(ω)

2γ2Ω
[δ(ω′ − Ω) + δ(ω′ +Ω)]P

∫
dζ

ζAν(k, ζ) + (k ×A(k, ζ))ν
ζ − ω′

(15)

and

Yµ,ω(k, ω
′) =π(Yµ,ω(k, 0) + i

Ẏµ,ω(k, 0)

Ω′ )δ(Ω′ − ω′)

+ π(Yµ,ω(k, 0)− i
Ẏµ,ω(k, 0)

Ω′ )δ(Ω′ + ω′) +Pgµ,ν(ω)
ω′Aν(k, ω

′)

Ω′2 − ω′2

+
gµ,ν(ω)

2Ω′ [δ(ω′ − Ω′) + δ(ω′ +Ω′)]P

∫
dζ

ζAν(k, ζ)

ζ − ω′ .

(16)

The Fourier transform(s) of the Euler-Lagrange equations (8), (9) and (10) are

(−ω′2 + k2)Aν(k, ω
′) = ω′PB(k, ω

′) + (ω′ + k×)PA(k, ω
′), (17)

(−ω′2 +Ω′2(ω, k))Yµ,ω(k, ω
′) = gµ,ν(ω)ω

′Aν(k, ω
′), (18)

(−ω′2 +Ω2(ω, k))Xµ,ω(k, ω
′) =

fµ,ν(ω)

γ
(ω′Aν(k, ω

′) + (k×A(k, ω′))ν). (19)

In this section, the classical equations of motion that follow from (1) are obtained. To obtain
the quantum dynamical description, we need to quantize the system canonically.
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3 Quantum dynamics
A Hamiltonian must be derived from the local Lagrangian to quantize the system(1). The
associated canonical momentum density for the electromagnetic field, moving dielectric par-
ticle, and bulk dielectric are as follows

p(x, t) =
∂L

∂Ȧ
= Ȧ(x, t) + PA(x, t) + PB(x, t) (20)

Π =
∂L

∂Ẋ
= γ2Ẋ, (21)

Q =
∂L

∂Ẏ
= Ẏ. (22)

The following equal-time communication relations are required on the fields and their con-
jugate momenta to quantize the system canonically[

Âµ(x, t), p̂ν(x
′, t)

]
= iℏ δ(x− x′)δµν , (23)[

X̂µ,ω(x, t), Π̂ν,ω′(x′, t)
]
= iℏ γ2δ(ω − ω′)δµν δ(x− x′), (24)[

Ŷµ,ω(x, t), Q̂ν,ω′(x′, t)
]
= iℏ δ(ω − ω′)δµν δ(x− x′). (25)

From these relations, we can obtain the Hamiltonian of the system as follows

Ĥ =
1

2

∫
dω(

Π̂2
ω(x, t)

γ2
+ ω2X̂2

ω(x, t) + γ2v2(∂xX̂ω(x, t))
2)

+
1

2

∫
dω(Q̂2

ω(x, t) + ω2
0Ŷ

2
ω(x, t) + (∂xŶω(x, t))

2)

+

∫
dωX̂µω(x, t)fµν(ω)∂

iÂν(x, t) +
1

2
∂iÂν∂

iÂν

+
1

2
(p̂(x, t)− PA(x, t)− PB(x, t))

2. (26)

To have a better understanding of the quantum dynamics of the system, especially moving
dielectric particle, the diagonal form of Hamiltonian is useful. The Hamiltonian operator is
quadratic in the fields; therefore it can be diagonalized into a continuum of normal modes
by the Fano diagonalization technique as follows

Ĥ =

∫ ∞

0

dk

∫ ∞

0

ℏω (Ĉ†(k, ω, t)Ĉ(k, ω, t) + h.c). (27)

The Ĉ operators appearing in (27) satisfy bosonic commutation relations and are combina-
tions of the electromagnetic field, particle, and bulk dielectric field operators.

[Ĉ(k, ω, t), Ĉ†(k′, ω′, t)] = δ(ω − ω′) δ(k− k′). (28)
The diagonalizing operators can be expressed as a linear combination of the canonical op-
erators

Ĉµ(k, ω, t) =
−i

ℏ
(f∗

p,µν(k, ω)Âν(k, t)− f∗
A,µν(k, ω)p̂ν(k, t)

+

∫ ∞

0

dω′ f∗
Π,µν(k, ω, ω

′)X̂ω′,ν(k, t)−
∫ ∞

0

dω′ f∗
X,µν(k, ω, ω

′)Π̂ω′,ν(k, t))

+

∫ ∞

0

dω′ f∗
Q,µν(k, ω, ω

′)Ŷω′,ν(k, t)−
∫ ∞

0

dω′ f∗
Y,µν(k, ω, ω

′)Q̂ω′,ν(k, t)),

(29)
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where fp, fA, fπ, fX , fQ, fY are bi-tensorial coefficients, and they must be obtained to es-
tablish diagonalization. The following relations among bi-tensorial coefficients are achieved
using [Ĥ, Ĉ] = ℏωĈ and fundamental commutation relations

(γ2ω2 − γ2Ω2(k, ω′))fX,µν(ω, ω
′,k) = −fµα(ω

′)(k− k2

ω
)fA,αν(k, ω) +∫

dω′f2
µα(ω

′)(1 +
k

ω′ )fX,αν(ω, ω
′,k) +

∫
dω′gµα(ω

′)fαβ(ω
′)fY,βν(ω, ω

′,k); (30)

(ω2 − Ω′2(k, ω′))fY,µν(ω, ω
′,k) = gµα(ω

′)
k2

ω
fA,αν(k, ω) +∫

dω′fµαω
′gµν(ω

′)(1 +
k

ω′ )fX,αν(ω, ω
′,k) +

∫
dω′g2µα(ω

′)fY,βν(ω, ω
′,k); (31)

(ω2 − k2)fA,µν(k, ω) =

−
∫ ∞

0

dω′ fµα(ω
′)(k− ω′)fX,αν(ω, ω

′,k) +

∫ ∞

0

dω′ gµα(ω
′)ω′fY,αν(ω, ω

′,k); (32)

(γ2ω2 − η2)fX,µν(ω, ω
′,k) = −Aµα(k, ω)fA,αν(k, ω) (33)

(ω2 − η′2)fA,µν(k, ω) = −
∫ ω

0

Bµα(k, ω)fX,µν(ω, ω
′,k) (34)

(ω2 − Λ′2)fY,µν(ω, ω
′,k) = gµα

k× k

ω
fA,αν(k, ω) +

∫
dωfµαgαα′fX,α′ν(ω, ω

′,k)(35)

where

Aµα(k, ω) = fµν(ω)(k− k× k

ω
) +

∫
dωg2µαfαν

k× k

ω(ω2 − Λ′2)
; (36)

Bµα(k, ω) = fµν(ω)(ω − k) +

∫
dωg2µαfαν(1−

k

ω
)

ω

ω2 − Λ′2 ; (37)

η2 = Λ2 +

∫
dω

∫
dω′g2µαf

2
αµ(1−

k

ω
)

1

ω2 − λ′2 ; (38)

η′2 = k2 +

∫
dωg2µα

k× k

ω

1

ω2 − λ′2 ; (39)

Λ2 = γ2Ω2 +

∫
dω′fµνfνµ(1−

k

ω′ ); (40)

Λ′2 = Ω′2 +

∫
dω′gµνgνµ; (41)

After some long straightforward calculation, we find the required bi-tensorial coefficients
which completes the diagonalization procedure. Now, the electromagnetic field operators in
the frequency-domain can be written in terms of the diagonalizing operators as follows

Âµ(k, ω) = π

√
2ℏ

η(k, ω)
Bαα′(k, ω)Gα′µ(k, ω)Ĉα(k, ω), (42)

that green’s function G of the system is as follows

Gµν(k, ω) = −(ω2 − η′2 + P

∫ ∞

0

dω′Aµα(k, ω
′)Bαν(k, ω

′)/γ2

η2(k, ω)/γ2 − ω2
+

iπAµα(k, ω)Bαν(k, ω
′)

2η(k, ω′)
)−1

(43)
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and memory function of the system is

κµν = P

∫ ∞

0

dω′Aµα(k, ω
′)Bαν(k, ω

′)/γ2

η2(k, ω)/γ2 − ω2
+

iπAµα(k, ω)Bαν(k, ω
′)

2η(k, ω′)
. (44)

The moving dielectric particle field in terms of the diagonalization operators is

X̂ω,µ(k, ω
′) =2π

√
ℏ

2η(k, ω)
δ(ω − η(k, ω)

γ
)Ĉµ(k, ω)

+
Aνµ

2γ2η(k, ω)
(

1

ω + η(k,ω)
γ

+
1

η(k,ω)
γ − ω − i0+

)Âν(k, ω),

(45)

and the bulk dielectric field according to diagonalize operators is

Ŷω,µ(k, ω
′) =2π

√
ℏ

2Λ′(k, ω)
δ(ω′ − Λ′)Ĉµ(k, ω)

Dµν(k, ω)

2Λ′(k, ω)
(

1

ω′ − Λ′(k, ω)
+

1

Λ′ − ω′ − i0+
)Âα(k, ω

′),

(46)

where we defined

Dµν(k, ω) =gµν
k× k

ω
+

Aµν(k, ω)

2γ2η(k, ω)
(

1

ω + η
γ

+
1

η
γ − ω − i0+

)

+

∫
dωfµα(ω)gαν(ω)(1−

k

ω
)

(47)

Having explicit form of the fields in terms of creation and annihilation operators, quantum
dynamical and quantum thermodynamical properties of the system can be calculated. In
the next section, we will obtain some interesting thermal properties of the system.

4 Quantum Thermal Properties
When objects are set in motion, they may extract real photons from the quantum electro-
magnetic field and experience a non-contact force. Firstly, we calculate the emitted power
by extracting work from the electric and magnetic dipoles of the moving particle. The
power of the system is determined by the rate of work done by the electromagnetic field on
a dielectric at a differential volume dr in the relativistic regime.

⟨P ⟩ =
∫
V

dr ⟨∂µ(vµPAν(k, ω) + PBν(k, ω))(vα∂αA
ν(k, ω))⟩ , (48)

where ∂µ(vµPAν(k, ω) + PBν(k, ω)) is relativistic current density in the matter. By substi-
tuting Eqs.(42,45,46) into Eq.(48), we have

⟨P ⟩ =2π2ℏ
∫
V

dr

∫
dω

∫
dkµ[(

k2v2fαα′′(ω)δ(ω − η
γ )

η(k, ω)
+

k2vgαα′′(ω)δ(ω − Λ′)√
η(k, ω)Λ′(k, ω)

)

×Bαα′(k, ω)Gα′α′′(k, ω)N(ω)

+ (fαα′(ω)k2v2βα′α′′(ω) + gαα′(ω)k2vβ′
α′α′′(ω))N(ω)ℑGα′′α(k, ω))],

(49)
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where
ℑGµν =

π2ℏ
η(k, ω)

B2
µα(ω)G

∗
αβ(k, ω)Gβν(k, ω),

and we defind

βµν(ω) =
Aνµ(k, ω)

2γ2η(k, ω)
(

1

ω + η(k,ω)
γ

+
1

η(k,ω)
γ − ω − i0+

) (50)

β′
µν(ω) =

Dµν(k, ω)

2Λ′(k, ω)
(

1

ω′ − Λ′(k, ω)
+

1

Λ′ − ω′ − i0+
) (51)

In the non-relativistic limit, where terms containing velocity are ignored, the same results as
those obtained in previous examples [20,23] are obtained. This relation allows us to interpret
thermal and fractional radiation, heat transfer, and the effect of movement on the particle’s
radiation power.

In the second step, we calculate the thermal correlation functions of the subsystems. In
thermal equilibrium, the expectation value of each eigenmode of the system is⟨

Ĉ†
µ(k, ω)Ĉν(k

′, ω′)
⟩
= N(ω)δ(k − k′)δ(ω − ω′)δµν ,

and ⟨
Ĉµ(k, ω)Ĉν(k

′, ω′)
⟩
= 0,

where N(ω) = exp(ℏω/KBT ) − 1. Using equation (42), we can calculate the frequency-
domain correlation function for the electromagnetic field.⟨

Â†
µ(k, ω)Âν(k

′, ω′)
⟩
=

π2ℏ
η(k, ω)

B2
µα(ω)G

∗
αα′(k, ω)Gα′ν(k, ω)N(ω) δ(ω − ω′)δ(k− k′)δµν

=
N(ω)

N(ω) + 1

⟨
Âµ(k, ω)Â

†
ν(k

′, ω′)
⟩
,

(52)

and the thermal expectation value of the particle in the frequency domain is⟨
X̂†

µ(k, ω)X̂ν(k
′, ω′)

⟩
=

2πℏ
η(k, ω)

(1 + βµν(ω)β
∗
µν(ω) + βµα(ω)Bαα′(k, ω)Gα′ν(k, ω)

+ β∗
µα(ω)B

∗
αα′(k, ω)G∗

α′ν(k, ω))×N(ω) δ(ω − ω′)δ(k− k′)δµν .

(53)

The temporal and symmetric correlation function of the electromagnetic field is obtained as
follows using equation (52)

1

2

⟨
Â†

µ(x, t)Âν(x
′, t′) + Âµ(x, t)Â

†
ν(x

′, t′)
⟩
=

ℏ
4π3

∫ ∞

0

dω

∫ ∞

0

dk coth(
ℏω

2KBT
) cos[ω(t− t′)− k(r− r′)]ℑGµν(k, ω). (54)

The thermal expectation value of the moving dielectric particle in thermal equilibrium is

1

2

∫ ∞

0

dω
⟨
γ2v2α∂

αXµ,ω(x, t)∂
αXν,ω(x, t)− ω2Xµ,ω(x, t)Xν,ω(x, t)

⟩
=

ℏ
2π

ℑ
∫ ∞

0

dω

∫ ∞

0

dkk2Aα′α′′(ω)

Bα′α′′(ω)
coth(

ℏω
2KBT

)
d[κµα(k, ω)Ω(k, ω)]

dω
Gαν(k, ω) (55)
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Hamiltonian (26) expectation value in thermal equilibrium contains some sentence that we
need to calculate. The expectation value of the Hamiltonian of the free moving dielectric
particle is

1

2

∫ ∞

0

dω
⟨
∂αYµ,ω(x, t)∂

αYν,ω(x, t)− ω2
0Yµ,ω(x, t)Yν,ω(x, t)

⟩
=

ℏ
2π

ℑ
∫ ∞

0

dω

∫ ∞

0

dkk2Dα′α′′(ω)

Bα′α′′(ω)

√
η(k, ω)

η′(k, ω)
coth(

ℏω
2KBT

)
d[κ′

µα(k, ω)Ω
′(k, ω)]

dω
Gαν(k, ω),

(56)

and the expectation value of Hamiltonian of the bulk dielectric is as follows

κ′
µν = P

∫ ∞

0

dω′Dµα(k, ω
′)Bαν(k, ω

′)

Λ′2(k, ω)− ω2
+

iπDµα(k, ω)Bαν(k, ω
′)

2Λ′(k, ω′)
(57)

and the thermal expectation value of the Hamiltonian interaction part is∫ ∞

0

dωfµν ⟨Xµ,ω(x, t)∂
αAν(x, t)⟩ =

ℏ
2π

ℑ
∫ ∞

0

dω

∫ ∞

0

dkkfαα′(ω)
Aα′α′′(ω)

Bα′α′′(ω)
coth(

ℏω
2KBT

)κµα′(k, ω)Gαν(k, ω), (58)

and ∫ ∞

0

dωgµν ⟨Yµ,ω(x, t)∂
αAν(x, t)⟩ =

ℏ
2π

ℑ
∫ ∞

0

dω

∫ ∞

0

dkkgαα′(ω)
Dα′α′′(ω)

Bα′α′′(ω)

√
η

Λ′ coth(
ℏω

2KBT
)κ′

µα′(k, ω)Gαν(k, ω).(59)

So having these quantities, the thermal equilibrium expectation value of the internal energy
and free energy of the system are accessible. The internal energy of the system is

U =
ℏ
2π

ℑ
∫ ∞

0

dω

∫ ∞

0

dk coth(
ℏω

2KBT
)Gµν(k, ω)

(k2I − ω2I + fµα(ω)
Aα′′′α′′(ω)

Bα′′′α′′(ω)
(
d[καν(k, ω)Ω(k, ω)]k

2

dω
+ ωκµν(k, ω))

+ gµα(ω)
Dα′′′α′′(ω)

Bα′′′α′′(ω)

√
η(k, ω)

Λ′(k, ω)
(
d[κ′

αν(k, ω)Ω
′(k, ω)]k2

dω
+ ωκ′

µν(k, ω)))

and free energy of the system is

F =
KBT

π

∫ ∞

0

dω

∫ ∞

0

dk ln(sinh
ℏω

2KBT
)ℑGµν(k, ω)

(k2I − ω2I + fµα(ω)
Aα′′′α′′(ω)

Bα′′′α′′(ω)
(
d[καν(k, ω)Ω(k, ω)]k

2

dω
+ ωκµν(k, ω))

+ gµα(ω)
Dα′′′α′′(ω)

Bα′′′α′′(ω)

√
η(k, ω)

Λ′(k, ω)
(
d[κ′

αν(k, ω)Ω
′(k, ω)]k2

dω
+ ωκ′

µν(k, ω)))

+KBT ln 2.
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The quantum work of the electromagnetic field on the particle and heat power of the system
can be achieved using the free energy of the system and the first law of thermodynamics
[24]. Also, the entropy of the system and the specific heat at constant volume of the system
can be obtained as follows

S =
KB

π

∫ ∞

0

dω

∫ ∞

0

dk [ln(sinh
ℏω

2KBT
)− ℏω

2KBT
coth(

ℏω
2KBT

)]ℑGµν(k, ω)

(k2I − ω2I + fµα(ω)
Aα′′′α′′(ω)

Bα′′′α′′(ω)
(
d[καν(k, ω)Ω(k, ω)]k

2

dω
+ ωκµν(k, ω))

+ gµα(ω)
Dα′′′α′′(ω)

Bα′′′α′′(ω)

√
η(k, ω)

Λ′(k, ω)
(
d[κ′

αν(k, ω)Ω
′(k, ω)]k2

dω
+ ωκ′

µν(k, ω)))

+KB ln 2,

and

C =
ℏ

2πKBT 2

∫ ∞

0

dω

∫ ∞

0

dkω csch2(
ℏω

2KBT
)ℑGµν(k, ω)

(k2I − ω2I + fµα(ω)
Aα′′′α′′(ω)

Bα′′′α′′(ω)
(
d[καν(k, ω)Ω(k, ω)]k

2

dω
+ ωκµν(k, ω))

+ gµα(ω)
Dα′′′α′′(ω)

Bα′′′α′′(ω)

√
η(k, ω)

Λ′(k, ω)
(
d[κ′

αν(k, ω)Ω
′(k, ω)]k2

dω
+ ωκ′

µν(k, ω))).

The information transmitted by the system can be investigated by the entropy of the system
under the influence of the moving dielectric particle.

5 Conclusion
In this paper, we study the behavior of a particle moving in an electromagnetic field in
the presence of a dielectric body. We introduce a canonical relativistic quantization of the
electromagnetic field in the presence of a moving dielectric particle next to the semi-infinite
bulk dielectric with a surface in the interface. We investigate the quantum thermodynamic
properties of the system and explicitly determine the behavior of the main thermodynamic
functions: the free energy, the mean energy, the entropy, and heat capacity. We show
that the formulation of quantum thermodynamics for an electromagnetic system in uniform
relative motion differs from its formulation in the rest-frame.
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