Instability in the Magnetized Accretion Disks with Outflows in the Presence of Self-Gravity

Document Type : Research Paper

Authors

1 Department of Physics, Faculty of Sciences, University of Mazandaran, Babolsar, Iran

2 Department of Physics, University of Mazandaran Babolsar Iran

3 University of Mazandaran

Abstract

We study the stability of a model of magnetized accretion disk, in which
outflows play a significant role in driving the inflow, and magnetic field is generated by
a dynamo operating in the disk. We present a local and linear analysis of the stability
in the presence of self-gravity and winds. The numerical results show the model with
self-gravity is unstable in all parts, while in a model without self-gravity, instability
can be observed only in regions near the central body. Eventually, the effect of wind
cooling on the model stability was discussed. According to the results, in systems
without self-gravity, wind cooling can help the system towards stability, but in the
presence of self-gravity, it is shown that our model will remain unstable in all regions.
Comparison of these result with observational evidence shows that this model can be
suitable for the explaining the behavior of the disks surrounding young stellar objects.

Keywords


[1] Blandford, R. D., & Payne, D. G. 1982, Monthly Notices of the Royal Astronomical Society, 199, 883.
[2] Cao, X., & Spruit, H. C. 2013, The Astrophysical Journal, 765, 149.
[3] Ruden, S. 2004, The Astrophysical Journal, 605, 880.
[4] Knigge, C. 1999, Monthly Notices of the Royal Astronomical Society, 309, 409.
[5] Blandford, R. D., & Begelman M. C. 1999, Monthly Notices of the Royal Astronomical Society, 303, L1.
[6] Abbassi, S., Ghanbari, J., & Ghasemnezhad M. 2010, Monthly Notices of the Royal Astronomical Society, 409, 1113.
[7] Shadmehri, M. 2009, Monthly Notices of the Royal Astronomical Society, 395, 877.
[8] Schurch, N. J., Done, C., & Proga D. 2009, The Astrophysical Journal, 694, 1.
[9] Xue, L. S. L., & Wang, J. 2005, The Astrophysical Journal, 623, 372.
[10] Hennebelle, P., & Teyssier, R. 2008, Astronomy and Astrophysics, 477, 25.
[11] Banerjee, R., Vazquez-Semadeni, E., Hennebelle, P., & Klessen R. S. 2009, Monthly
Notices of the Royal Astronomical Society, 398, 1082.
[12] Li, S. L., & Begelman, M. C. 2014, The Astrophysical Journal, 786, 6.
[13] Sadowski, A. 2016, Monthly Notices of the Royal Astronomical Society, 462, 960.
[14] Pringle, J. E. 1976, Monthly Notices of the Royal Astronomical Society, 177, 65.
[15] Vietri, M., & Stella L. 1998, The Astrophysical Journal, 503, 350.
[16] Hsu, Ch. Y., & Lin, M. K. 2022, The Astrophysical Journal, 937, 55.
[17] Goedbloed, H., & Keppens, R. 2022, The Astrophysical Journal, 259, 65.
[18] Clarke, C., & Carswell, R. 2007, Principles of Astrophysical Fluid Dynamics. Cambridge Univ. Press. England.
[19] Balbus, S. A., & Hawley, J. F. 1991, Astrophysical Journal, 376, 214.
[20] Balbus, S., & Hawley, J. F. 1998, Reviews of Modern Physics, 70, 1.
[21] Goldman, I., & Wandel, A. 1995, Astrophysical Journal, 443, 187.
[22] Zhu, Y., & Narayan, R. 2013, Monthly Notices of the Royal Astronomical Society, 434, 2262.
[23] Zhu, Z., Hartmann, L., Nelson, R. P., & Gammie C. F. 2012, Astrophysical Journal, 476, 110.
[24] Donati, J. F., Jardine, M. M., Gregory, S. G., Bouvier, J., Dougados, C., & Mnard, F. 2009, EAS Publications Series, 39, 133.
[25] Lubow, S. H., Papaloizou, J. C. B., & Pringle, J. E. 1994, Monthly Notices of the Royal Astronomical Society, 268, 1010.
[26] Koenigl, A., & Wardle, M. 1996, Monthly Notices of the Royal Astronomical Society,279, L61.
[27] Krasnopolsky, R., Li, Z. Y., & Blandford, R. 1999, The Astrophysical Journal, 526, 631.
[28] Campbell, C. G. 2001, Monthly Notices of the Royal Astronomical Society, 323, 211.
[29] Cao, X., & Spruit, H. C. 2002, Astronomy and Astrophysics, 385, 289
[30] Koenigl, A. 2004, The Astrophysical Journal, 617, 1267.
[31] Campbell C. G. 2009, Monthly Notices of the Royal Astronomical Society, 392, 271.
[32] Habibi, A., & Abbassi, S. 2019, The Astrophysical Journal, 887, 256.
[33] Karimzadeh, S., Khesali, A. R., & Khosravi, A. 2020, Monthly Notices of the Royal Astronomical Society, 493, 2101.
[34] Shakura, N. I., & Sunyaev, R. A. 1973, Astronomy and Astrophysics, 24, 337.
[35] Campbell, C. G. 1999, Monthly Notices of the Royal Astronomical Society, 310, 1175.
[36] Piran, T. 1978, Astrophysical Journal, 221, 652.
[37] Campbell, C. G. 2010, Monthly Notices of the Royal Astronomical Society, 401, 177.
[38] Misra, R., & Taam, R. 2001, The Astrophysical Journal, 553, 978.
[39] Duschl, W. J., & Britsch, M. 2006, The Astrophysical Journal, 653, 89.
[40] Lehmann, M., & Lin, M. 2023, Monthly Notices of the Royal Astronomical Society, 522, 5892.
[41] Lin, M., Hsu, Ch. 2022, The Astrophysical Journal, 926, 24.
[42] Wu, Y., Lithwick, Y. 2021, The Astrophysical Journal, 923, 123.
[43] Huang, J., & et al. 2023, The Astrophysical Journal, 943, 107.
[44] Forgan, D. H. 2019, Monthly Notices of the Royal Astronomical Society, 485, 4465.
[45] Raquel, S. 2009, Astrophysics and Space Science Proceedings Series, 611.