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Abstract. We study the stability of a model of magnetized accretion disk, in which
outflows play a significant role in driving the inflow, and magnetic field is generated by
a dynamo operating in the disk. We present a local and linear analysis of the stability
in the presence of self-gravity and winds. The numerical results show the model with
self-gravity is unstable in all parts, while in a model without self-gravity, instability
can be observed only in regions near the central body. Eventually, the effect of wind
cooling on the model stability was discussed. According to the results, in systems
without self-gravity, wind cooling can help the system towards stability, but in the
presence of self-gravity, it is shown that our model will remain unstable in all regions.
Comparison of these result with observational evidence shows that this model can be
suitable for the explaining the behavior of the disks surrounding young stellar objects.

Keywords: Accretion Disks, Outflows, Instability, Magnetic Fields

1 Introduction

Now, we know that accretion discs are an integral part of many astrophysical systems, such
as active galactic nuclei, binary stars, and young stellar objects, that have been studied for
about half a century. It is worth noting that magnetized accretion discs with outflows have
been attracting astrophysicists, since with presence of charged particles in disks, magnetic
fields play an important role in their structure. Also, outflow that leading to mass loss and
consequently, transport angular momentum and energy outward, both can help facilitate the
accretion process and affect some of the discs quantities [1-9]. On the other hand, magnetic
fields and the outflows are important factors in studying the instability of accretion sys-
tems [10-13]. Scientists consider instabilities as the source of many astrophysical processes.
Accordingly, since the formation of the theory of accretion discs until today, instabilities
in these objects have also been of interest [14-17]. In accretion discs, there can exist many
types of instabilities, which take a staple part in the evolution of the discs [18]. For instance,
instabilities in accretion systems are the source of turbulence and viscosity [19-20] and many
optical fluctuations in discs spectrum can be explained by these instabilities [21-22]. More
importantly, by investigating these instabilities, one can find an appropriate explanation for
the formation of some parts of the universe, such as the solar system [23-24]. Therefore, the
instability problem in magnetized accretion discs with outflow has long been an important
topic for study and research.

Lubow et al. (1994, here after LPP94) presented a simple accretion disk model with
magnetic winds and considered the stability of such system [25]. In their model, viscosity
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and self-gravity were neglected and only the effect of the magnetic torque on the accretion
process was investigated. Furthermore, they assumed the disc to be vertically isothermal,
indeed perturbations in the thermal balance and the disk structure were ignored except for
those in the inflow speed. They stated that perturbations of the disk inflow speed were
related to perturbations of the wind mass flux, thus the increase in wind mass flux led to
increases the inflow speed and the bending of the poloidal magnetic field. Eventually, LPP94
claimed that discs with magnetic winds are intrinsically unstable.

Konigl & Wardle (1996, here after KW96) expressed that the equilibrium model pro-
posed by LPP94 was overly simplified and thus not desirable and the results derived from
this model will be unreliable [26]. One of reasons was that LPP94 ignored the effect of
gas compression by the disc magnetic field lines at system . However, they used LPP94’s
method on a more comprehensive model that was proposed by themselves in 1993. KW96
showed that in their model, the mass outflow rate is independent of the inflow speed. They
stated that instability of LPP94 does not occur for the magnetized disc with winds in the
presence ambipolar diffusion and in general, disc with mass outflow will be immune the most
disruptive instability. By implementing numerical simulations, Krasnopolski et al. (1999)
attended to the same problem and resulted in the stability of such discs [27].

Campbell (2001) investigated a steady accretion disc model with magnetic winds which
the magnetic field is introduced by dynamo mechanism [28]. He showed when perturbations
in the disk structure is account for, especially perturbations of magnetic diffusivity η, the
instability proposed by LPP94 will disappear. He demonstrated that perturbations in η
decreases the bending of the poloidal magnetic field, and in return will prevent from the
increase in the inflow speed, thus making his model stable against perturbations.

Cao & Spruit (2002, here after CO02) conducted a linear stability analysis on an approx-
imate equilibrium disk model [29]. Similar to LPP94, they also ignored viscosity in their
model. They obtained a dispersion relation in a range of short wavelengths and concluded
that if the magnetic torque of the wind is strong enough, the disks with magnetic winds
are unstable, and magnetic diffusion in the accretion system stabilizes if the wind torque is
small.

Konigl (2004) by conducting another analysis reviewed the model in which KW96 were
working [30]. In his analysis, he undermined the results presented by CO02 and expressed
that although CO02 had a better physic and solving method than the work done by LPP94,
but the extent of the effects of the used approximations on the final results was still unknown.
Equilibrium solution curves in Konigl (2004) indicated two stable and unstable branches.
He expressed that the developed perturbations in the unstable branch may be the same as
the unstable model proposed by LPP94, but the presence of the stable branch means that
such discs are not inherently unstable.

Campbell (2009) investigated stability of his previous model more precisely [31]. In works
of LPP94 and CO02, viscosity had been ignored, thus they studied case of Np → 0 that Np
is Magnetic Prandtl number. However, in Campbell (2001), viscosity and magnetic wind
torques are comparable, Np ∼ 1. In his new work, he considered general values of Np and
researched the thermal balance and vertical equilibrium of the disc. Campbell concluded
that such system is unstable.

Li & Begelman (2014) proposed that the outflow can reduce the disk temperature and
help to stability. Also, in the presence of outflows, the diffusivity time-scale has been in-
creased and since a amount of the released gravitational energy is transferred to disk outward,
η will be reduced [12].

Habibi & Abbasi (2019) researched the thermal stability of a thin accretion disc in the
presence of a advected magnetic field and winds. They stated that both magnetic pressure
and the winds can help with the thermal stability of the system. They could also define a
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criterion for the disc stability [32].
By reviewing past researches, we conclude that the stability of the magnetized accretion

discs with outflows still remain an open problem, which provoked us to search it for a more
comprehensive model. In previous work, we considered a magnetized accretion disc model
with dynamo mechanism in the presence of wind and self-gravity. One result was that
the ratio of viscosity torque to magnetic torque is more than anticipated criterion for the
stability of the system [33]. Therefore, in this article, we decided to study stability of this
model.

The structure of this paper is as follows. Section 2 involves the basic equations and
assumptions governing the model. In Section 3, we investigate the stability of the system.
The effect of wind cooling on the model stability is presented in Section 4. Finally, discussion
and summary are given in Section 5.

2 Basic assumption and equations of the model

A geometrically thin, axisymmetric is studied surrounding a compact accretor of mass M
and radius R. Cylindrical coordinates (r, φ, z) are utilized, with the origin at accretor center.
The semi-thickness of the disk is marked by H(r) and the disk surfaces are at z = ±H(r).
It is supposed that the disc has a dipole-symmetry magnetic field, so it would be able to
emanate magnetically channelled winds from the disk surfaces. Also, we took into account
full self-gravity in the model. Therefore, gravitational potential of system, in addition to
the central object mass, includes mass of the disk. Following Shakura & Sunyaev (1973),
turbulent viscosity ν is chosen as ν = εcsH, where ε is introduced as the rms turbulent Mach
number and cs is the isothermal sound speed [34].
Components of the radial, azimuthal and vertical of momentum equation can be written as
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potential is given by ψT = ψM + ψdisk. The continuity equation is
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In this model, the source of magnetic fields is a self-sustaining dynamo. Accretion disk
dynamos are of an αω−nature, the interaction of turbulent motions leads to the production
of poloidal field from toroidal field that this is named“α − effect” and toroidal field is
generated from poloidal field by the strong radial shear that is introduced as “ω − effect”.
By approximations, for a thin disk equation polidal and toroidal components of general
mean-field induction equation as follow [35],
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−∂Bφ
∂t

+ η
∂2Bφ
∂z2

= −rΩ′Br, (5)

where η is the magnetic diffusivity, it can be related to turbulent viscosity by Np = ν/η,
which in our model, is supposed Np ∼ 1 [33]. Also, α is the production function of poloidal
field and the prime denotes differentiation.

Although, it assumed that the gas pressure in the system is dominant but in the presence
of the perturbation we used the general form of the state equation as follow
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The energy equation for this model is
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where K = 4σB/3κρ is the conductivity, σB and κ are the Stefan-Boltzmann constant and
the Rosseland mean opacity, respectively. Also, in gas-pressure-dominated case we have
Γ3 = Γ1 and their value is equal to the ratio of specific heats.
∇ ·B = 0 in Cylindrical coordinates can be written as
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Poisson equation is given by
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3 Stability analysis

We use linear and local perturbation method to investigate the system instability [36]. Local
analysis means that the perturbation wavelengths must be much shorter than the disc radius,
λ� r. Also, by using linear analysis, we can neglect second and higher-order perturbations.
After writing basic equations, we proceed as follows

1. The equilibrium state of the system is first defined and then disturbed.

2. System variables should be written as equilibrium variables + perturbation variables.

3. Perturbation state variables should be written exponentially, i.e. ei(k.~r−ωt).

4. These variables must be considered in basic equations.

5. In the end, a dispersion relation k must be obtained in terms of ω, and based on its
negative or positive, imaginary or real sign, the stability or instability of the system
must be determined.

Variables of the system that are subject to perturbations are pressure P , density ρ, temper-
ature T , gravitational potential ψT , angular velocity Ω, radial velocity υr, vertical velocity
υz, magnetic field radial component Br, magnetic field azimuthal component Bφ and the
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magnetic field vertical component Bz. As we have mentioned, these variables are equal to
the equilibrium state + the perturbation section. So, we have

P = P0 + P1, ρ = ρ0 + ρ1, ψT = ψT0 + ψT1, T = T0 + T1, Ω = Ω0 + Ω1,
υr = υr0 + υr1, υz = υz0 + υz1, Br = Br0 +Br1, Bφ = Bφ0 +Bφ1, Bz = Bz0 +Bz1,

(10)
where indexes 0 and 1 refer to the equilibrium state and the perturbation section, respec-
tively. Since we intend to investigate the perturbation in both vertical and radial axes,
we consider the perturbation section to be exponential ei(kr.r+kz.z−ωt), where kr and kz
are radial and vertical components of the wave number, respectively. Then, we add these
quantities to the basic equations of the disc, and eventually, the perturbation equations will
be obtained. In order to numerically solve, we have made all the obtained perturbation
equations dimensionless. Dimensional form of perturbation equations are as follow,
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• The component of the vertical of momentum equation

(ik̃rυ̃r0 + ik̃zυ̃z0 − iω̃)υ̃z1 + (ik̃zm̃
2)P̃1 + (ik̃zF )ψ̃T1 + (ik̃zf1υ̃

2
A)B̃r1 +

(ik̃zf2υ̃
2
A)B̃φ1 − (ik̃rf1υ̃

2
A)B̃z1 = 0. (14)

• The components of induction equations

f1υ̃r1 + (υ̃r0 − iω̃)B̃z1 − (iω̃ + iD̃m̃εk̃z)B̃r1 − m̃εB̃φ1 = 0. (15)

γn(3 + n)B̃r1 + 2(D̃m̃εk̃2z + iω̃)B̃φ1 + 2ik̃rf2Ω̃1 = 0. (16)

• Maxwell equation

(1 + ik̃r)B̃r1 + ik̃zB̃z1 = 0. (17)
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• The state equation
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and υA = B0/
√
µ0ρ0 is Alfven speed. Also, we assume that B0 is amount of magnetic field

in the disk equilibrium state that Br0 = f1B0, Bφ0 = f2B0, Bz0 = f3B0, thus√
f21 + f22 + f23 = 1,

and on the other hand, for a dipole-symmetry magnetic field we have, f3 > f2 > f1.
D̃ = H/r is the ratio of thick to the disk radius that we have used from a typical model [37].
Meantime,γ is the ratio of the mass of the disk inner edge to the central object mass [33].
The quantity n defined by its relationship between the under-study radius and the disk inner
radius, r = nr0, in which can be a parameter for investigating instability in different regions
of the disk. Also, Ã = 4πGρ0r

2/ψT0 shows the ratio of the disk gravitational potential to
the total gravitational potential, therefore it is as parameter for considering of the presence
of self-gravity in system and 0 < Ã < 1. If Ã −→ 1, then ψdisk � ψM , if Ã −→ 0.5, then
ψdisk ≈ ψM and also if Ã −→ 0, then ψdisk � ψM .

3.1 Dispersion relation and numerical results

In the following, by forming a system of dimensionless perturbation equations from the
previous section, the relevant coefficients matrix is achieved. Then, by obtaining the deter-
minants of this matrix and equating them to zero, we find a relation for dispersion equation
in which the general form of is as follow

G5ω̃
5 +G4ω̃

4 +G3ω̃
3 +G2ω̃

2 +G1ω̃ +G0 = 0 (22)
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where Gi(i = 0..5) are the equation coefficients. Also, since the perturbations have compo-
nents in both vertical and radial axes, we define the dimensionless wave numbers of these
two axes as k̃r = k̃ cos(t) and k̃z = k̃ sin(t) , in which k̃ is the dimensionless perturbation

wave number. Based on localized perturbation condition, we have k̃ � 2π. Also, t is the
angle that k̃ forms with the disc plane, and in this paper, we assumed t = π

4 . we solved
equation (23) numerically. This fifth-order equation will have five answers. But only those
unstable answers are important. According to the exponential function that we selected
for the perturbation section, the imaginary and the positive part of the solution will be
considered.

At first, we investigated the system stability in the state of no self-gravity (Ã = 0), it
should be noted that for other required parameters of the model, have been adopted values
similar to Karimzadeh et al. (2020). For various regions the results is shown in Figure 1.
This figure illustrates that the disk is unstable in the inner region and by moving away from
the central object, instability decreases and the system is approximately stable in the disk
outer edges. Next, we did the solution in the presence of self-gravity (Ã = 0.5). Figures
2,3 and 4 is plotted respectively for n = 1.5 ,n = 5 and n = 10. The consequences shows
which in the presence of self-gravity not only the system is unstable in all regions, but also
the number of instability increase. It is clear that unlike solving without self-gravity, in this
case, the disk is unstable in all regions.

4 The effect of the wind cooling on stability

Since the outflows can remove most of the gravitational energy released in disk, therefore
they can help system cooling and a term can be assigned for their presence in the energy
equation [38]. We added Q−wind to the right side of the equation (8) as

Q−wind =
1

2
(ηb + ηkf

2)K̄rζ+2Ω 2
k , (23)

where ηb, ηk, f, K̄ and ζ are defined parameters (Habibi & Abbasi 2019). Hence, in the case
the model total cooling can write as

Q−tot = Q−rad +Q−wind, (24)

where if the ratio of the radiation cooling to the disk total cooling is displayed with q̃,
therefore we have

Q−wind = (1− q̃)Q−tot, (25)

it is necessary to mention that q̃ depends on the physical variables or parameters, but for
simplicity, we applied it as a free parameter. By adding this term to the energy equation,
we investigate system instability in the presence of wind cooling. All the dimensionless
perturbation equations are the same as the previous section, except for the energy equation,
which has rewritten as
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The dispersion equation will obtain from the way similar to the previous section. Also here,
by choosing appropriate values for the model parameters, we have numerically solved the
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dispersion equation. we know that most of mass loss occurs at the inner regions of the disc
by outflow, and also according to Figure 1. in the case without self-gravity, the system had
been more unstable in the regions near the central object . Thus, we considered the effect
of wind cooling on the stability of this region in absence of self-gravity. Figure 5. shows the
results of this investigation. As seen, the wind cooling is effective on the stability of inner
regions of the disc, and by increasing the share of wind cooling , the system will become
more stable.

To study the effects of wind cooling on the instabilities of a magnetized disc with outflow
and in presence of self-gravity, we did numerical solution for different regions with assuming
q̃ = 0.5 and Ã = 0.5. The results are shown in Figure 6, Figure 7 and Figure 8. In
the previous section, it was observed that in presence of self-gravity, instability exist in all
regions of disc. In this section, although we found that wind cooling reduces the strength of
the system instabilities, but it can quench only one instability, thus the system will remain
unstable.

5 Summary and discussion

The study of instabilities in accretion discs has always concerned astrophysicists. Numerous
studies have been conducted in this subject, but the stability problem of the magnetized
accretion disc with outflows is still being debated .Therefore, investigating a more compre-
hensive model to achieve results that are consistent with the observations is necessary. In
this paper, we studied the stability of a the model of self-gravitating, magnetized accre-
tion disc, which has a dipole-symmetry magnetic field that is produced by an αω − nature
dynamo and this magnetic field can emanate winds from the disc’s surfaces. It should
be noted that the stability analysis performed in this paper has advantages over previous
researches on magnetized accretion discs with outflows. Such that a larger number of pertur-
bation variables have been studied simultaneously in the accretion system, which shows the
comprehensiveness of this research. On the other hand, we know some characteristics and
quantities of the disc, such as density, temperature, values for magnetic field components,
inflow speed, etc., will not be the same throughout the disc and will have different values
depending on the radius. In our proposed model, it is possible to investigate the stability
of the system in different regions, which allows appropriate value selection for the variables
and parameters defined of disk. The results show that even without self-gravity, there is
possibility of a kind of instability near the compact accretor and as outer edge of the disc is
approached, this instability will be quench. This result confirms the work done by LPP94
and Campbell(2009), We can say that this behaviour results from the reduction of the inflow
speed and wind mass-loss rate in the outer regions of the disc.

On the other hand, when self-gravity was added to the model, it was seen that the number
of accretion disc instabilities had increased and the system had become more unstable. This
solution was performed for three different regions on the disc and the results show that
generally, in the presence of self-gravity, all regions of the disc will be unstable, and by
moving the closer to the outer edge of the disc, the intensity of one of these instabilities
increases. In all literature that studied the stability of accretion disks with magnetically
driven winds(mentioned in the introduction) self-gravity were neglected. Thus, this result ,
in itself, is of rather little surprise that the number of instabilities increase, sine we can say
that gravitational instability is probably added [39]. In our initial investigations, the effect
of outflow on the stability of the system was considered by adding some terms in continuity
and momentum equations. We know that outflows not only transports mass and angular
momentum but also they are a sink for energy ejection from the accretion disks. Thus, they
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can also affect the energy equation. For this purpose, a term was added for the presence
of winds to the cooling part of the energy equation and the effect of wind cooling on the
system stability was investigated.

First, the effect of wind cooling on the stability of the regions close to the central object
in absence self-gravity was investigated. Results showed that by increasing the share of wind
cooling, the growth rate of instability decreases, and the system progresses to stability. Then,
to observe the effect of wind-cooling on the instabilities of the model in the presence self-
gravity, by selecting an average value for the wind cooling parameter in the system, its effects
on different regions of the disc were investigated. Results have shown that wind cooling is
only effective in reducing one of the instabilities, so the system will still be unstable in all
regions. This result is in agreement with the work of Li & Begelman (2014) that showed
the outflow can help to disk stability. In summary, by considering the wind cooling, a
magnetized disc with outflows can be almost stable that this outcome is almost close results
in KW96 and CO02, but such a model would be unstable in the presence of self-gravity.

Astrophysicists believe there is a possibility of planet formation in discs around young
stellar objects. Indeed, the main method for understanding planet formation lies in study
of the protoplanetary disks, although the properties of disks relate directly to the planets
that may potentially form but in these disks, which are generally thin and magnetized, self-
gravity is considered and outflows is seen. On the other hand, Protoplanetary discs (PPDs)
are host a number of instabilities that may play role directly or indirectly in the process
of planetesimal formation [40-45]. Summarizing all the results in this paper and a review
of research on PPDs, we can say that our proposed model can be a desirable model for
accretion disks around young stellar objects. Since, not only it can justify the existence of
jets in these types of discs [33], but also the resulting instabilities in model can relate to the
formation of masses and eventually the formation of planets. Full investigation of each of
these instability modes requires more research that we can provide in the next works.

Data Availability: The data that support the findings of this study are available from the
corresponding authors, upon reasonable request.
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Figure 1: Investigation of model stability in the absence of self-gravity in different areas.
Dash lines, dash-dot-dot lines and dot lines are for n = 1.5, n = 5, and n = 10 respectively.
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Figure 2: Investigation of model stability in the presence of self-gravity for n = 1.5, dash
lines and dot lines display two instability in the model.

Figure 3: Investigation of model stability in the presence of self-gravity for n = 5, dash lines
and dot lines display two instability in the model.
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Figure 4: Investigation of model stability in the presence of self-gravity for n = 10, dash
lines and dot lines display two instability in the model.

Figure 5: Investigation of model stability in the absence of self-gravity and in the presence
of wind cooling for n = 1.5. Dash lines, dash-dot lines and dot lines are for q̃ = 1, q̃ = 0.5,
q̃ = 0.3, respectively.
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Figure 6: Investigation of model stability in the presence of self-gravity and wind cooling
for n = 1.5.

Figure 7: Investigation of model stability in the presence of self-gravity and wind cooling
for n = 5.
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Figure 8: Investigation of model stability in the presence of self-gravity and wind cooling
for n = 10.


