Thermodynamic Phase Transition of Anti De Sitter Schwarzschild Scalar-Tensor-Vector-Black Holes

Document Type : Research Paper

Authors

1 Faculty of Physics, Semnan Universiy, Semnan, Iran, 35131-19111

2 Faculty of physics, Semnan University

Abstract

Instead ofscalar-tensor gravity

models which are applicable for

description of cosmic inflation with unknown dark sector of

matter/energy, at present tense

there are presented different alternative

scalar-tensor-vector gravities

where meaningful dynamical vector fields can support cosmic

inflation well without to use dark matter/energy concept. One of

these gravity models was presented by Moffat which

its modified Schwarzschild black hole solution is used to

study thermodynamic phase transition in presence of the AdS space

pressure in this article. To do

so, we obtained an equation of state which asymptotically reaches

to equation of state of ideal gas for large black holes but for

small scale black holes we obtained a critical point at phase

space where the black hole can be

exhibited with a phase transition

at processes ofisothermal and

isobaric. By looking at diagrams of the Gibbs free energy and the

heat capacity at constant pressure which are plotted versus the

temperature and the specific volume one can see an inflection

point which means that the phase transition is

second order type. In fact there

is small to large phase transition for the black hole which is

equivalent to the Van der Waals liquid-gas phase transition in

ordinary thermodynamic systems. The phase transition

happens below the critical point

in phase space when the gravitational charge of the black hole is

equal to its mass.

Keywords


[1] Will, C. M. 2014, Living reviews in relativity, 17, 1.
[2] Berti, E., et al. 2015, Classical and Quantum Gravity, 32, 243001.
[3] Abbott, B. P., et al. 2016, Physical review letters, 116, 061102.
[4] Hees, A., et al. 2017, Physical Review Letters, 118, 211101.
[5] Heisenberg, L. 2019, Physics Reports, 796, 1.
[6] Clifton, T., Ferreira, P. G., Padilla, A., & Skordis, C. 2012, Physics reports, 513, 1.
[7] Weinberg, S. 1972, Gravitation And Cosmology: Principles And Applications Of The General Theory Of Relativity, Wiley, New York.
[8] Trimble, V. 1987, Annual review of astronomy and astrophysics, 25, 425.
[9] Moffat, J. W. 2006, Journal of Cosmology and Astroparticle Physics, 2006, 004.
[10] Moffat, J., & Rahvar, S. 2013, Monthly Notices of the Royal Astronomical Society, 436, 1439.
[11] Ghaffarnejad, H. 2008, General Relativity and Gravitation, 40, 2229.
[12] Ghaffarnejad, H. 2009, General Relativity and Gravitation, 41, 2941.
[13] Brownstein, J., & Moffat, J. 2006, Monthly Notices of the Royal Astronomical Society, 367, 527.
[14] Moffat, J., & Rahvar, S. 2014, Monthly Notices of the Royal Astronomical Society, 441,
3724.
[15] Moffat, J. 2014, arXiv preprint arXiv:1410.2464.
[16] Moffat, J. 2014, arXiv preprint arXiv:1409.0853.
[17] Ayon-Beato, E., & Garcia, A. 1998, Physical review letters, 80, 5056.
[18] Ayon-Beato, E., & Garcıa, A. 1999, Physics Letters B, 464, 25.
[19] Ayon-Beato, E., & Garcia, A. 1999, General Relativity and Gravitation, 31, 629.
[20] Ayon-Beato, E., & Garcia, A. 2005, General Relativity and Gravitation, 37, 635.
[21] Cai, X.-C., & Miao, Y.-G. 2020, arXiv preprint arXiv:2008.04576.
[22] Ghaffarnejad, H. 2009, Classical and Quantum Gravity, 27, 015008.
[23] Ghaffarnejad, H. 2015, Journal of Physics: Conference Series, IOP Publishing.
[24] Ghaffarnejad, H., & Dehghani, R. 2019, The European Physical Journal C, 79, 1.
[25] Ghaffarnejad, H. 2019, Journal of Physics: Conference Series, IOP Publishing.
[26] Hawking, S. W. 1974, Nature, 248, 30.
[27] Hawking, S. W. 1975, Commun. Math. Phys. 43, 199.
[28] Davies, P. C. 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 353, 499.
[29] Hawking, S. W. 1971, Physical Review Letters, 26, 1344.
[30] Bardeen, J. M., Carter, B., & Hawking, S. W. 1973, Communications in mathematical physics, 31, 161.
[31] Bekenstein, J. D. 1973, Physical Review D, 7, 2333.
[32] Hawking, S. W., & Page, D. N. 1983, Communications in Mathematical Physics, 87, 577.
[33] Chamblin, A., Emparan, R., Johnson, C. V., & Myers, R. C. 1999, Physical Review D, 60, 064018.
[34] Chamblin, A., Emparan, R., Johnson, C. V., & Myers, R. C. 1999, Physical Review D, 60, 104026.
[35] Altamirano, N., Kubiznak, D., Mann, R. B., & Sherkatghanad, Z. 2014, Galaxies, 2, 89.
[36] Chen, S.-B., Liu, X.-F., & Liu, C.-Q. 2013, Chinese Physics Letters, 30, 060401.
[37] Zou, D.-C., Zhang, S.-J., & Wang, B. 2014, Physical Review D, 89, 044002.
[38] Cai, R.-G., Cao, L.-M., Li, L., & Yang, R.-Q. 2013, J. High Energy Physics, 2013, 1.
[39] Wei, S.-W., & Liu, Y.-X. 2014, Physical Review D, 90, 044057.
[40] Zou, D.-C., Liu, Y., & Wang, B. 2014, Physical Review D, 90, 044063.
[41] Dehghani, M., Kamrani, S., & Sheykhi, A. 2014, Physical Review D, 90, 104020.
[42] Stetsko, M. 2020, Physical Review D, 101, 124017.
[43] Dolan, B. P., Kostouki, A., Kubiznak, D., & Mann, R. B. 2014, Classical and Quantum Gravity, 31, 242001.
[44] Frassino, A. M., Kubiznak, D., Mann, R. B., & Simovic, F. 2014, J. High Energy Physics, 2014, 1.
[45] Xu, H., Xu, W., & Zhao, L. 2014, The European Physical Journal C, 74, 1.
[46] Gunasekaran, S., Kubiznak, D., & Mann, R. B. 2012, J. High Energy Physics, 2012, 1.
[47] Belhaj, A., Chabab, M., El Moumni, H., & Sedra, M. 2012, Chinese Physics Letters, 29, 100401.
[48] Dolan, B. P. 2014, Classical and Quantum Gravity, 31, 165011.
[49] Ghafarnejad, H. 2006, Physical Review D, 74, 104012.
[50] Ghaffarnejad, H. 2007, Physical Review D, 75, 084009.
[51] Ghaffarnejad, H., Neyad, H., & Mojahedi, M. 2013, Astrophysics and Space Science,
346, 497.
[52] Ghaffarnejad, H. 2016, Astrophysics and Space Science, 361, 1.
[53] Ghaffarnejad, H., & Farsam, M. 2019, Advances in High Energy Physics, 2019.
[54] Ghaffarnejad, H., Yaraie, E., & Farsam, M. 2018, International J. Theoretical Physics, 57, 1671.
[55] Farsam, M., Ghaffarnejad, H., & Yaraie, E. 2019, Nuclear Physics B, 938, 523.
[56] Ghaffarnejad, H., Farsam, M., & Yaraie, E. 2020, Advances in High Energy Physics, 2020.
[57] Ghaffarnejad, H., Yaraie, E., & Farsam, M. 2019, General Relativity and Gravitation, 51, 1.
[58] Ghaffarnejad, H., & Yaraie, E. 2018, Physics Letters B, 785, 105.
[59] Ghaffarnejad, H., & Farsam, M. 2019, The European Physical Journal Plus, 134, 110.
[60] Yaraie, E., Ghaffarnejad, H., & Farsam, M. 2018, The European Physical Journal C, 78, 1.
[61] Ghaffarnejad, H., Yaraie, E., & Farsam, M. 2020, The European Physical Journal Plus, 135, 1.
[62] Ghaffarnejad, H., Yaraie, E., Farsam, M., & Bamba, K. 2020, Nuclear Physics B, 952, 114941.
[63] Farsam, M., Yaraie, E., Ghaffarnejad, H., & Ghasami, E. 2020, arXiv preprint arXiv:2010.05697.
[64] Ghaffarnejad, H., Yaraie, E., & Farsam, M. 2020, arXiv preprint arXiv:2010.07108.
[65] Moffat, J. 2015, The European Physical Journal C, 75, 1.
[66] Haydarov, K., et al. 2020, The European Physical Journal C, 80, 1.
[67] Mureika, J. R., Moffat, J. W., & Faizal, M. 2016, Physics Letters B, 757, 528.
[68] Kastor, D., Ray, S., & Traschen, J. 2009, Classical and Quantum Gravity, 26, 195011.
[69] Dolan, B. P. 2011, Classical and Quantum Gravity, 28, 235017.
[70] Maldacena, J. 1999, International J. theoretical physics, 38, 1113.
[71] Gubser, S. S., Klebanov, I. R., & Polyakov, A. M. 1998, Physics Letters B, 428, 105.
[72] Witten, E. 1998, arXiv preprint hep-th/9802150.
[73] Collaboration, W., et al. 2007, Astrophys. J. Suppl, 170, 377.
[74] Carter, B. 1968, Communications in Mathematical Physics, 10, 280.
[75] Page, D. N. 2005, New J. Physics, 7, 203.
[76] Smarr, L. 1973, Physical Review Letters, 30, 71.
[77] Hu, S.-Q., Kuang, X.-M., & Ong, Y. C. 2019, General Relativity and Gravitation, 51, 1.