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Abstract. Instead of scalar-tensor gravity models which are applicable for descrip-
tion of cosmic inflation with unknown dark sector of matter/energy, at present tense
there are presented different alternative scalar-tensor-vector gravities where meaning-
ful dynamical vector fields can support cosmic inflation well without to use dark mat-
ter/energy concept. One of these gravity models was presented by Moffat which its
modified Schwarzschild black hole solution is used to study thermodynamic phase tran-
sition in presence of the AdS space pressure in this article. To do so, we obtained an
equation of state which asymptotically reaches to equation of state of ideal gas for
large black holes but for small scale black holes we obtained a critical point at phase
space where the black hole can be exhibited with a phase transition at processes of
isothermal and isobaric. By looking at diagrams of the Gibbs free energy and the heat
capacity at constant pressure which are plotted versus the temperature and the specific
volume one can see an inflection point which means that the phase transition is second
order type. In fact there is small to large phase transition for the black hole which is
equivalent to the Van der Waals liquid-gas phase transition in ordinary thermodynamic
systems. The phase transition happens below the critical point in phase space when
the gravitational charge of the black hole is equal to its mass.

Keywords: Modified Gravity, Thermodynamics of black holes, Schwarzchild, de Sitter,
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1 Introduction

General relativity (GR) is an elaborated theory of gravity which successfully has the most
correspondence to the experiments [1–4] but nonetheless, there are some unresolved issues
that can not been explained by GR. Therefore, various kinds of theories have been devel-
oped as generalization of GR in order to solve such problems [5–7]. By calculating velocity
of galaxies in the clusters Zwicky concluded that the gravitational mass is more than the
luminous matter [8]. Consequently, dark matter was defined, but it has not been detected
yet and GR has failed to explain cosmological data without postulated non-baryonic dark
matter. In fact, we require modified gravity theories where the gravity tensor is coupled
non-minimally by dynamical vector fields and so dark sector of matter/energy problem could
be resolved by understandable dynamical vector fields. These models are called as scalar-
tensor-vector gravity (STVG) models [9–12]. These theories explain the phenomena without
requirement to introduce dark matter [13] and successfully explain the rotation curves of
galaxies [10], the dynamics of galactic clusters [14], the growth of structure [15] and the
cosmic microwave background (CMB) acoustic power spectrum [16]. Also, Cai and Miao
have analyzed the quasinormal modes of the generalized Ayon-Beato Garcia (ABG) black
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holes [17–20] in STVG theory [21]. One of us is studied some applications of the STVG
model given by [11,12] in the references [22–25]. Discovery of evaporation of black holes in
presence of interacting quantum matter fields by Hawking in 1974 [26,27] is inferred that
there is a closed relationship between the unknown quantum gravity theory and the black
hole thermodynamics. After his novel paper, many physicists encouraged to expand studies
about the black hole thermodynamics while the quantum gravity theory is still maintained
as unknown. For instance, Davis began to study the phase transition of black holes [28] and
it became noticable since the Hawking discovered the black holes radiation [29]. Bardeen
investigated the laws of black holes thermodynamics [30]. Bekenstein introduced that the
black hole entropy should be a quarter of the surface area of the horizon S = A

4 [31]. Hawk-
ing and Page obtained a first order phase transition for the AdS Schwarzschild black hole [32]
which is known as Hawking-Page phase transition. The next motivation had been made by
Chambline et al in [33,34] where they discovered a small-large phase transition in AdS-RN
black hole which is the same as Van der Waals liquid-gas phase transition. These studies have
encouraged others to study thermodynamics of different kinds of AdS black holes in several
gravitational theories: Kerr-AdS black hole [35] is studied in GR theory, AdS-Schwarzschild,
AdS-RN and Kerr-AdS black holes thermodynamics are studied in modified f(R) gravity [36],
Born-Infeld gravity [37], Gauss-Bonnet gravity [38–40], dilaton gravity [?,41,42], Lovelock
gravity [43–45] or higher dimensions [46–48], respectively. In this regard, the effect of a
positive cosmological constant was not forgotten and the evaporation of the quantum black
holes in the presence of a cosmological constant prevented the final destruction of the quan-
tum black holes. In practice, the cosmic parameter was a restraining force (see for instance
[49–51]). In this sense, modified laws of black holes thermodynamics were generated where
fluid hydrodynamics behavior of the black holes are described by V dP work, the same as
ordinary thermodynamic systems in which V is the black hole thermodynamic volume and
P is pressure of the surrounded environments. In fact, P is equal to inverse of radius square
of AdS space (de Sitter space with negative cosmological constant). In a geometrical per-
spective, an AdS (dS) vacuum space is an open hyperbola (closed spherical) with negative
(positive) Gaussian spatial curvature space time. In other words, negative (positive) values
cosmological constant is related to negative (positive) values of vacuum energy density in
the AdS (dS) space. There are many published papers which one can follow in the literature
(see for instance [52–64] and references therein). When one studies thermodynamic behavior
of the black holes without (with) to using the cosmological constant, she is appling in fact an
ordinary (extended) thermodynamic phase space. Studying thermodynamics of black holes
is one of the most remarkable and important subjects to investigate in all gravitational the-
ories and physicists hope to obtain some acceptable proposals about the unknown essential
quantum gravity theory via studies of black holes thermodynamics. Moffat presented a par-
ticular scalar-tensor-vector gravity (STVG) model [9] and he solved its gravitational metric
equations to obtain a gravitationally charged spherically symmetric static black hole metric
solution. His obtained solution is similar to the Reissner-Nordstrom electrically charged
black hole metric solution [65] where we want to study effects of the black hole charge on
its possible thermodynamic phase transition in presence of the AdS pressure. We will call
this black hole as AdS Schwarzschild STVG black hole in what follows. The structure of
the work is as follows.

In section 2, we introduce in summary the AdS Schwarzschild STVG black hole metric.
In section 3, we calculate its thermodynamic variables such as entropy, temperature, heat
capacity, Gibbs free energy etc., and try to give a modified Smarr relation. By plotting
diagrams of the thermodynamic variables, we analyze possible phase transition of the black
hole and situations where the black hole exhibits two coexisting subsystems. Section 3 is
devoted to the concluding remarks and outlook of the work.
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2 AdS Schwarzschild STVG black hole

Let us start with scalar-tensor-vector gravity (STVG) model which was presented at the
first time by Moffat [9] as follows.

S = SGrav + Sφ + SS + SM , (1)

where gravity part of the above action SGrav is defined by the Einstein-Hilbert action with
additional cosmological constant Λ

SGrav =
1

16π

∫
d4x
√
−g[

1

G
(R+ 2Λ)], (2)

the modified massive vector part of the action Sφ is given by

Sφ = −
∫
d4x
√
−g
[
ω

(
1

4
BµνBµν + V (φ)

)]
, (3)

and the scalar part of the action SS is given by

SS =

∫
d4x
√
−g
[

1

G3

(
1

2
gµν∇µG∇νG− V (G)

)]
+

∫
d4x
√
−g 1

G

(
1

2
gµν∇µω∇νω − V (ω)

)
+

∫
d4x
√
−g
[

1

µ2G

(
1

2
gµν∇µµ∇νµ− V (µ)

)]
, (4)

respectively and SM denotes model dependent ordinary matter source. g is absolute value
of the metric determinant and R = gµνR

µν is the Ricci scalar. φµ refers to a massive
vector field with mass parameter µ and self interaction potential V (φ) = − 1

2µ
2φµφµ and

Bµν = ∂µφν − ∂νφµ is anti symmetric linear tensor field and ω is a dimensionless scalar
field with self interaction potential V (ω). V (G) is self interaction potential of non material
scalar field G(x) (namely variable Newtonian gravity coupling parameter) and V (µ) denotes
self interaction potential according to the scalar field µ(x). ∇µ refers to the covariant
derivative for a metric tensor field gµν . Such alternative gravity models are called as creative
models against GR, because without the last term SM these models can create gravity by
self interaction of the fields, while in GR with SGrav, the external matter source SM is
necessary to produce the gravity. In fact, effects of the vector field mass φµ dose not
vanish just at kiloparsec scales from gravitational sources, so it can be neglected near the
black holes solutions of the model. At the slow varying regime of the Newton’s gravity
coupling parameter, one can consider G = GN (1 +α) where GN is the well known Newton’s
gravity coupling constant at the Newton and General relativity approach of the model
in which the dimensionless parameter α comes from alternative contribution of the above
action at the slow varying regime of the scalar field G(x). In other words, α is usually
called as the gravitational charge which for α = 0 the STVG gravity reduces to GR, so
we can regard deviation of the STVG theory with respect to GR given by α parameter.
For vacuum sector of the action (1), the Moffat himself solved metric field equations and
obtained spherically symmetric static metric vacuum solutions without Λ. He obtained
a singular asymptotically flat metric same as the Reissner-Nordstrom one with particular
gravitational charge q = ±

√
GNGM [65] as

ds2 =−
(
1− 2GM/r + αGNGM

2/r2
)
dt2

+
(
1− 2GM/r + αGNGM

2/r2
)−1

dr2 + r2d(dθ2 + sin2 θdϕ2),
(5)
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for a gauge field φt(r) 6= 0 with φr(r) = φθ(r) = φϕ(r) = 0. Haydarov et al [66] studied effects
of the gravitational charge α on stabilization of orbits of test particles moving on the space
time (5) recently. Moffat himself obtained also another nonsingular asymptotically flat black
hole metric (not shown) by choosing other form for the vector gauge field φµ in the ref. [65]
where central region of the obtained metric solution reduces to vacuum de Sitter space which
makes it as nonsingular. By looking at his metric solutions, one can infer that the produced
effective cosmological constant versus α and the black hole mass M is depended to kind of
the used vector gauge field φµ. But, we should point that these asymptotically flat solutions
are different with non asymptotically flat metric solutions which are obtained usually by
regarding a nonzero cosmological constant Λ 6= 0. These solutions approach asymptotically
to the vacuum de Sitter (Λ > 0) or the vacuum anti de Sitter (Λ < 0) spaces. In this
sense, we want to study thermodynamic behavior of the metric solution (5) with Λ 6= 0 in
this work. Thermodynamic behavior of the modified Schwarzschild black hole metric (5) is
studied by Mureika et al [67] where the black hole heat capacity exhibits change of the sign
at the critical mass in presence of the Hawking radiation. This means the black hole can has
a phase transition same as the Reissner-Nordsrom black hole itself (i.e. with electric charge)
by regarding the Hawking temperature and the backreaction correction of the interacting
quantum fields which is studied by one of us previously [52]. In general, the first law of (the
asymptotically flat) black hole thermodynamics is usually written as

dM = TdS + ΩdJ + ΦdQ, (6)

where T = κ
4π is the Hawking temperature of the black hole (κ is the surface gravity),

S = A
4 is the Bekenstein-Hawking entropy of the black hole (A is the event horizon surface

area), Ω is the angular velocity, J is the angular momentum, Φ is the electrostatic potential
difference between infinity and the horizon, Q is the electric charge and M is the black hole
mass. Usually M is considered to be internal energy of the black hole U in the ordinary
thermodynamic sense, but it was suggested in [68] that it is more correctly interpreted as
the enthalpy M = H = PV +U of the black holes in presence of the cosmological constant.
In this sense, the first law of the black hole thermodynamics (6) should be extended with
variation of the cosmological term V dP as follows [69].

dM = TdS + V dP + ΩdJ + ΦdQ, (7)

where P = −Λ
8π is pressure of the AdS vacuum space and it is related to radius of the AdS

space as `AdS =
√

−3
Λ for Λ < 0. One can infer that the AdS black hole thermodynamic

volume can be calculated from the above extended first law of the thermodynamics of the
AdS black holes as V = ∂M

∂P

∣∣
S,J,Q

. In this sense, V is interpreted as conjugate thermody-

namic variable for the pressure P of the AdS space. In other words, V is a finite, effective
volume for the region outside the AdS black hole horizon, which can also be interpreted
as minus the volume excluded from a spatial slice by the black hole horizon. In fact, the
black hole solutions with a non-vanishing cosmological constant Λ have received consider-
able recent attention because of two reasons as follows: This is due both to the role they
play in the phenomenology of the AdS/CFT correspondence [70–72] which associates the
cosmological constant with the rank of the gauge group originally and also, of course, to
the observational data suggesting that the universe may have a small positive value of Λ
[73]. In four dimensions, the extension of the Kerr-Newman family of solutions to non-zero
Λ term was found many years ago by Carter [74]. In fact, many authors are investigating
to bring our understanding of certain properties of AdS black holes more closely in parallel
with well known results in the asymptotically flat case. Dolan showed in ref. [69] that the
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cosmological parameter raises efficiency from Penrose process in the AdS black hole with
respect the case where Λ = 0. Because of importance of Λ term which we introduced here
and also as an extension of our previous work [52], we like to study thermodynamic behavior
of the AdS gravitationally charged Schwarzschild STVG black hole which is given by the
subsequent line element,

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2, (8)

where the metric potential f(r) is

f(r) = 1− 2(1 + α)M

r
+
α(1 + α)M2

r2
+

8π

3
Pr2, (9)

for which we have substituted P = −Λ
8π , G = GN (1 + α) and GN = 1. To study thermody-

namic behavior of this AdS Schwarzschild STVG black hole, let us to use an equipotential
surface f(r,M,P, α) = constant to obtain first law of thermodynamics for this black hole
by varying this equipotential surface with respect to the variables r,M, α, P and by setting
df(r,M,P, α) = 0 as follows

dM = TdS + V dP + Φαdα, (10)

where the event horizon hypersurface r = rh is determined by setting f(rh,M, P, α) = 0 as
follows.

1− 2(1 + α)M

rh
+
α(1 + α)M2

r2
h

+
8πr2

hP

3
= 0. (11)

In the equation (10), the Hawking temperature is given versus the surface gravity of the
event horizon as

T =
1

4π

df

dr

∣∣∣∣
rh,M,P,α

=
4rhP

3
+

(1 + α)M

2πr2
h

(
1− αM

rh

)
, (12)

and

dS =
2πrhdrh

(1 + α)
(
1− αM

rh

) , (13)

is the entropy difference, and thermodynamic volume

V =
4πr3h

3

(1 + α)
(
1− αM

rh

) , (14)

is conjugate variable of the AdS space pressure P and

Φα = − M

2(1 + α)

(
2rh − (1 + 2α)M

rh − αM

)
(15)

is the conjugate variable for dimensionless gravitational charge α. One can see that the
entropy deference (13) reads the Bekenstein-Hawking entropy S = A

4 = πr2
h for α = 0 and

the corresponding thermodynamic volume (14) reduces to the geometric volume of the black

hole V =
4πr3h

3 . While for α 6= 0 and M = H = constant the integration of the entropy
difference (13) leads to the following equation containing a logarithmic term

S =

∫ rh

0

2πrhdrh

(1 + α)
(
1− αM

rh

) =
2π

(1 + α)

{
r2
h + αMrh + α2M2 ln

∣∣∣∣1− rh
αM

∣∣∣∣}. (16)
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In fact, this logarithmic term originates from quantum aspect which can be followed via
[75] and references therein. To obtain a relationship between the thermodynamic variables
of this black hole to be independent of the geometric parameter, we can do as follows: By
substituting (1− αM/rh) from (14) into the equation (12) we obtain

rh =
3TV

2(M + 2PV )
. (17)

Next, we substitute the latter equation into the conjugate potential (15) to obtain the
following identity between thermodynamic variables of the black hole.

Φα =
−M

4(1 + α)

[
(1 + 2α)M(M + 2PV )− 3TV

2αM(M + 2PV )− 3TV

]
. (18)

This differs with the well known Smarr relation [76] obtained from dimensional approach
as M = 2TS + αΦα

1 for the metric equation (9). However, there is do no worry because
authors of the ref. [77] showed also that there are some black hole solutions which do not
obey completely the Smarr relation of the black holes. In this sense, we can claim that
equation (18) is in fact modified Smarr relation for the AdS Schwarzschild STVG black hole
under consideration. The equation (18) is a hypersurface F (Φα, α, P, V, T,M) = 0 defined
in a 6-dimensional phase space. It is useful to obtain inflection point of this hypersurface
by calculating

∂Φα
∂α

∣∣∣∣
P,V,T

= 0,
∂2Φα
∂α2

∣∣∣∣
P,V,T

= 0, (19)

which reads 3 different critical points in 6 dimensional phase space {Φα, α, P, V, T,M} as
follows.

I : α→∞, Φα = 0, M(2PV +M) = 0, (20)

II : α = −1, Φα → −∞, 2M2 + 4MPV + 3TV = 0, (21)

and

III : α = −3

4
, Φα = 4M, M2 + 2MPV + 3TV = 0. (22)

In the following, we will see that none of the above values for α = −1,− 3
4 and/or α→∞ do

not describe physical situations and so possibility of phase transition is done just for α = 1.
We proceed now to obtain possible critical points of this black hole system as follows. By

regarding the black hole evaporation in presence of the Hawking radiation and beak-reaction
corrections of interacting quantum fields, the mass of the black hole is lost [49], [50], [52]
and so thermodynamics study of black holes should be done with variable enthalpy M . This
leads us to obtain an equation of state for the AdS Schwarzschild STVG black hole (9) which
is independent of the mass M. To do so, we first obtain the possible critical points which
occur through the following conditions for the inflection points

∂T

∂rh

∣∣∣∣
P,M,α

= 0,
∂2T

∂r2
h

∣∣∣∣
P,M,α

= 0, (23)

which by substituting the Hawking temperature (12) reads

rc = 2αM, Pc =
3(1 + α)

128πα3M2
, Tc =

(1 + α)

8πα2M
. (24)

1To obtain M = 2TS +αΦα we set Q = αM and ΦQ = Φα
M

and substitute them into the Smarr relation
of AdS Reissner-Nordstrom black hole which was given by M = 2TS + ΦQQ in ref. [77].
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By substituting (24) into the thermodynamic volume (14), we will have for critical thermo-
dynamic volume

Vc =
64πα3M3

3(1 + α)
. (25)

The critical horizon radius rc and the pressure Pc given by (24) must obey the equation of
horizon (11) for which we obtain the following condition.

α = 1. (26)

This corresponds to extremal condition on the Reissner-Nordstrom charged black hole which
is called as Lukewarm black hole [51] where the electric charge of the black hole is equal to
the mass and so the black hole temperature vanishes [52]. To make a dimensionless equation
of state we defined

t =
T

Tc
, p =

P

Pc
, v =

1

2

(
rh
rc

)
, (27)

and substitute into the temperature equation (12) so that

t = pv +
1

4v2
− 1

16v3
. (28)

The above equation of state reduces to the well known ideal gas equation of state for large
black holes v →∞ where we must call v as specific volume of this black hole. In this sense,
the obtained critical point will be

(tc, pc, vc) =

(
1, 1,

1

2

)
. (29)

This critical point is applicable for every AdS Schwarzschild STVG black hole with arbitrary
mass. Now, since we have found a mass-independent equation of state, we investigate its
possible phase transition for different processes of isotherm and isobaric, namely for processes
at constant temperature and constant pressure respectively. Substituting (24) and (27) into
the entropy (16) and the potential (15) one can obtain dimensionless forms respectively for
these quantities as follows.

s = 4v2 + v +
1

4
ln |1− 4v|, (30)

and

φ̃ =
8v − 3

4v − 1
, (31)

where we defined s = S
4πM2 and φ̃ = Φα

Φc
in which critical potential is Φc = Φα(rc) = −M4 .

Substituting the above dimensionless thermodynamic variables into the Gibbs free energy
G = M − TS one can obtain its dimensionless form as follows.

g = −1

2
+ 3ts, (32)

in which we have defined g = G
Gc

and Gc = −M2 is critical value of the Gibbs free energy.

3 Thermodynamic phase transition

To study possible phase transition in p−v plane which is applicable for isothermal processes,
we can rewrite the equation of state (28) versus the pressure as follows

p =
t

v
− 1

4v3
+

1

16v4
. (33)
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We plot diagram of the above equation of state for constant temperatures below and upper
of the critical temperature tc = 1 and also corresponding Gibbs free energy in Figure 1.
The pressure diagram in the Figure 1 shows the black hole is made from two subsystems for
t < tc but it has a single state for t > tc. Furthermore, in the Gibbs free energy diagram
we can infer that the system is maintain stable for negative values of the Gibbs free energy.
Physical interpretation of this diagrams is a phase transition from small to large black holes
because the Gibbs energy diverges to positive infinite value in limits v → 0. The system
will be unstable where the Gibbs free energy has positive values. Also, one can see that the
pressure diagram in Figure 1 is the same as the one which is happened for a Van der Waals
fluid in ordinary thermodynamics (see [61]). In Figure 2, we plot temperature versus the
entropy, the Gibbs free energy versus the specific volume and the temperature for isobaric
processes. Diagram of the temperature shows that for a given temperature one can obtain
two different values for the entropy at p < pc which means that the black hole system under
consideration is included with two subsystems (two different phases). Variation of the Gibbs
free energy versus the specific volume at constant pressure in Figure 2 shows that for p < pc,
the system exhibits with the small to large black holes phase transition. Looking at this
diagram one can infer that at constant pressure for large black holes v > vc(= 0.5) the
Gibbs free energy takes negative values which means the system becomes stable. In Figure
3, we plot heat capacity of the system at constant pressure. Changing of the sign of the
heat capacity at constant pressure for (t, v) ≤ (tc, vc) means that a phase transition happens
for the system. When heat capacity has positive (negative) values the system is called as
diathermal or heat absorber (exothermic or heat repellent) respectively. Variation of the
heat capacity diagram versus the temperature and the specific volume and its divergency
shows that the phase transition is the same as the one which is called as second kind phase
transition in ordinary thermodynamic processes. It may be useful if we study behavior of
the compressibility coefficient κ and coefficient of the volume expansion β near the critical
point. In ordinary thermodynamics these are called as follows.

κ = −1

v

(
∂v

∂p

)
t

, β =
1

v

(
∂v

∂t

)
p

, (34)

which corresponding diagrams are plotted in Figure 4. These diagrams show that β and
κ diverge to infinity at the critical point (29). Looking at the compressibility coefficient
diagram in Figure 4 one can see a divergency at small scale black holes which means that
the black hole exhibits a phase transition. Diagram of the volumetric expansion coefficient
versus the temperature shows that this coefficient decreases by raising the temperature at
constant pressure. By looking at the diagram of the volumetric expansion coefficient vs the
volume one can see that by rasing the specific volume and reducing it to below the critical
volume, the volumetric expansion coefficient decreases to zero. In short, one can obtain the
same interpretation for the system from β diagram in Figure 4.

4 Conclusion

In this paper, we have studied physical effects of a dynamical vector field on thermodynamic
phase transition of modified AdS Schwarzschild black hole. In short, dynamical vector field
creates a dimensionless α parameter which behaves as charge parameter for the black hole
and so the metric is the same as the Reissner-Nordstrom one. We obtained generalized
Smarr relation for the black hole. Mathematical calculations show small to large black hole
phase transition which is happened at below the critical point in phase space when the
gravitational charge α of the black hole is equal to the mass M . Motivation for using the
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AdS space pressure in studying the black hole thermodynamics shows that this black hole
behaves as ideal gas in its large scale but at smale scales transits to an imperfect Van der
Waals fluid phase. In this sense, without using the AdS pressure, the phase transition does
not happen for the black hole. The results of this paper are from studies on the behavior
of the Gibbs free energy, heat capacity, volumetric expansion coefficient and compressibility
coefficient on the PVT phases space. In future, we are going to see if other thermodynamic
phenomena are possible via the effects such as the holographic entanglement entropy on the
thermalization are possible for this kind of black hole and whether it has the Joule-Thomson
expansion or not.
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Figure 1: Diagrams of the pressure p and the Gibbs free energy g are plotted versus the
specific volume for isotherm processes t = constnat.

Figure 2: Diagrams for the temperature is plotted vs the entropy at constant pressure and
the Gibbs energy is plotted vs temperature and specific volume for isobaric processes.
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Figure 3: Diagrams for the potential is plotted vs the temperature at constant pressure and
heat capacity is plotted vs the temperature and the specific volume at constant pressure.

Figure 4: Diagrams for the coefficient of volume expansion β and compressibility coefficient
κ are plotted vs the temperature at constant pressure and vs the specific volume at constant
pressure respectively.


