Effect of Fluctuation of Dust Grain Charge on Electrostatic Sheath Formation in Dusty Plasma with Tsallis Electron Distribution

Document Type : Research Paper

Authors

Department of Physics, Mashhad Branch, Islamic Azad University, Mashhad, Iran

Abstract

The effect of dust particle charge fluctuation on the electrical potential in the plasma sheath is determined by solvation of Poisson' equation with the help OLM theory and a Tsallis distribution for current carried by electrons, a cold ion fluid and negatively charged immobile dust grains. It is indicated that the nature of electrical potential in plasma sheath dependent to the Sagdeev potential and the properties of electrostatic sheath strongly affected by fluctuations of dust grain charge that modified the Bohm criterion condition. For the first time, by solving the Sagdeev potential, a function is obtained which shows that when this function becomes negative, the ions accelerate into the region of the sheath and form an electrostatic sheath. This nonlinear function is heavily dependent on nonextensive degree of electron, the ion density ratio to electron and kind of plasma gases. It is showed that the farther we go from the Maxwell equilibrium distribution function, the ions need a higher initial velocity to be able to separate from the main body of the plasma and move towards the plasma sheath and the wall. Finally, the results are indicated that considering the dust particle charge fluctuations and the electron nonextensivity degree play an important role on electrostatic sheath formation and modify Bohm criterion.

Keywords


[1] Chang, T. T. S. 2015, An introduction to space plasma complexity, Cambridge University Press.
[2] Fortov, V. E., & Morfill, G. E. 2009, Complex and dusty plasmas: from laboratory to space, CRC Press.
[3] Shukla, P. K., & Mamun, A. 2015, Introduction to dusty plasma physics, CRC press.
[4] Pierrard, V., & Lazar, M. 2010, Solar physics, 267, 153.
[5] Vasyliunas, V. M. 1968, J. Geophysical Research, 73, 2839.
[6] Swisdak, M. 2013, Physics of Plasmas, 20, 062110.
[7] Mott-Smith, H. M., & Langmuir, I. 1926, Physical review, 28, 727.
[8] Al’Pert, Y. L. 1966, American J. Physics, 34, 544.
[9] Rostoker, G. 1980, J. geomagnetism and geoelectricity, 32, 431.
[10] Willis, C., Coppins, M., Bacharis, M., & Allen, J. 2010, Plasma Sources Science and
Technology, 19, 065022.
[11] Denra, R., Paul, S., & Sarkar, S. 2016, AIP Advances, 6, 125045.
[12] Abid, A., Ali, S., & Muhammad, R. 2013, J. Plasma Physics, 79, 1117.
[13] Nicolaou, G., et al. 2018, ApJ., 864, 3.
[14] Robertson, S. 2013, Plasma Physics and Controlled Fusion, 55, 093001.
[15] Leubner, M. 2004, Physics of Plasmas, 11, 1308.
[16] Myra, J. 2021, J. Plasma Physics, 87, 1.
[17] Lima, J., Silva Jr, R., & Santos, J. 2000, Phys. Rev. E, 61, 3260.
[18] Plastino, A., & Plastino, A. 1993, Physics Letters A, 174, 384.
[19] Tsallis, C. 1988, J. statistical physics, 52, 479.
[20] Tsallis, C., Prato, D., & Plastino, A. R. 2004, Ap & SS., 290, 259.
[21] Guo, L., & Du, J. 2011, Physica A: Statistical Mechanics and its Applications, 390, 183.
[22] Liu, S.-Q., & Chen, X.-C. 2011, J. Plasma Physics, 77, 653.
[23] Guo, L., & Du, J. 2011, Physica A: Statistical Mechanics and its Applications, 390, 183.
[24] Livadiotis, G., & McComas, D. 2009, J. Geophysical Research: Space Physics, 114, 1.
[25] Huang, K. 2009, Introduction to statistical physics, Chapman and Hall/CRC.
[26] Beck, C., Benedek, G., Rapisarda, A., & Tsallis, C. 2005, Complexity, metastability and nonextensivity, World scientific Perss.
[27] Silva, R., Alcaniz, J., & Lima, J. 2005, Physica A: Statistical Mechanics and its Applications, 356, 509.
[28] Lavagno, A., et al. 1996, arXiv preprint astro-ph/9607147.
[29] Riemann, K.-U. 1991, J. Physics D: Applied Physics, 24, 493.
[30] Breizman, B. N., & Kiramov, D. I. 2021, J. Plasma Physics, 87, 1.
[31] Azuma, S., Fukuyama, A., & Takizuka, T. 2012, Contributions to Plasma Physics, 52, 512.
[32] Sharifian, M., Sharifinejad, H., Zarandi, M. B., & Niknam, A. 2014, J. Plasma Physics, 80, 607.
[33] Asserghine, A., Missaoui, A., El Kaouini, M., & Chatei, H. 2022, Contributions to Plasma Physics, 62, e202100084.
[34] Taherimoghadam, M., Motie, I., Bakhshayeshi, A., & Mirzaye, T. 2019, Iranian J. Astronomy and Astrophysics, 6, 71.
[35] Gong, J., & Du, J. 2012, Physics of Plasmas, 19, 023704.
[36] Liu, S.-Q., & Chen, X.-C. 2011, J. Plasma Physics, 77, 653.
[37] Zwillinger, D., & Jeffrey, A. 2007, Table of integrals, series, and products, Elsevier.
[38] Gradshteyn, I. S., & Ryzhik, I. M. 2014, Table of integrals, series, and products, Academic press.