Thermodynamics and Multi-Horizon Solutions in Quartic Quasitopological Gravity: A Power-Maxwell Approach

Document Type : Research Paper

Authors

1 Department of Physics, Jahrom University, Jahrom, P.O. Box 74137-66171, Iran

2 Department of Physics, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran

Abstract

We derive exact black hole solutions in $(n+1)$-dimensional fourth-order quasitopological gravity (4QTG) coupled to power-Maxwell electrodynamics. Thermodynamic properties (entropy, temperature, electric potential) are analyzed, verifying the first law. Crucially, thermal stability is \textit{exclusively} achievable in asymptotically AdS spacetimes, while dS and flat solutions exhibit universal instability. The study reveals that 4QTG supports multi-horizon black holes even without charge—a feature absent in Einstein gravity—due to repulsive effects of quartic curvature terms. These results highlight the role of higher-curvature corrections in resolving classical limitations of general relativity and provide new insights for AdS/CFT correspondence.

Keywords


[1] Lovelock, D., 1971, J. Math. Phys., 12, 498.
[2] Padmanabhan, T., 2010, Rep. Prog. Phys., 73, 046901.
[3] Myers, R. C. and Robinson, B., 2010, J. High Energy Phys., 08, 067.
[4] Dehghani, M. H., Bazrafshan, A., Mann, R. B., Mehdizadeh, M. R., et al., 2012, Phys. Rev. D, 85, 104009.
[5] Ahmed, J., López, J. L., et al., 2017, J. High Energy Phys., 05, 134.
[6] Bazrafshan, A., Naeimipour, F., Ghanaatian, M. and Khajeh, A., 2019, Phys. Rev. D, 100, 064062.
[7] Boulware, D. G. and Deser, S., 1985, Phys. Rev. D, 12, 3368.
[8] Born, M. and Infeld, L., 1934, Proc. R. Soc. Lond. A, 144, 425.
[9] Gao, C., 2021, Phys. Rev. D, 104, 064038.
[10] Camanho, X. O. and Edelstein, J. D., 2010, J. High Energy Phys., 06, 099.
[11] Witten, E., 1998, Adv. Theor. Math. Phys., 2, 253–291.
[12] Bazrafshan, A., Dehghani, M. H. and Ghanaatian, M., 2012, Phys. Rev. D, 86, 104043.
[13] Ghanaatian, M., 2015, Gen. Relativ. Gravit., 47, 105.
[14] Ghanaatian, M., Bazrafshan, A., Taghipoor, S. and Tawoosi, R., 2018, Can. J. Phys., 96, 1209–1215.
[15] Ghanaatian, M., Bazrafshan, A. and Brenna, W. G., 2014, Phys. Rev. D, 89, 124012.
[16] Ghanaatian, M., Naeimipour, F., Bazrafshan, A. and Abkar, M., 2018, Phys. Rev. D, 97, 104054.
[17] Ghanaatian, M., Naeimipour, F., Bazrafshan, A., Eftekharian, M. and Ahmadi, A., 2019, Phys. Rev. D, 99, 024006.
[18] Hendi, S. H. and Sheykhi, A., 2013, Phys. Rev. D, 88, 044044.
[19] Rasheed, D. A., 1995, Nucl. Phys. B, 454, 379.
[20] Boillat, G., 1970, J. Math. Phys., 11, 941.
[21] Hendi, S. H., Panahiyan, S., Panah, B. E. and Momennia, M., 2015, Phys. Rev. D, 91, 124057.
[22] Dey, T. K., 2004, Phys. Lett. B, 595, 484.
[23] Balasubramanian, V. and Kraus, P., 1999, Commun. Math. Phys., 208, 413.
[24] Hassaïne, M. and Martínez, C., 2008, Phys. Rev. D, 77, 027502.
[25] Hendi, S. H., 2010, Ann. Phys., 333, 282.
[26] Brigante, M., Liu, H., Myers, R. C., Shenker, S. and Yaida, S., 2008, Phys. Rev. D, 77, 126006.
[27] Kubizňák, D. and Mann, R. B., 2012, J. High Energy Phys., 07, 033.
[28] Wald, R. M., 1993, Phys. Rev. D, 48, R3427.