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Abstract. We derive exact black hole solutions in (n + 1)-dimensional fourth-order
quasitopological gravity (4QTG) coupled to power-Maxwell electrodynamics. Thermo-
dynamic properties (entropy, temperature, electric potential) are analyzed, verifying
the first law. Crucially, thermal stability is exclusively achievable in asymptotically AdS
spacetimes, while dS and flat solutions exhibit universal instability. The study reveals
that 4QTG supports multi-horizon black holes even without charge—a feature absent
in Einstein gravity—due to repulsive effects of quartic curvature terms. These results
highlight the role of higher-curvature corrections in resolving classical limitations of
general relativity and provide new insights for AdS/CFT correspondence.
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1 Introduction
The pursuit of a consistent quantum theory of gravity has motivated extensive research
into higher-curvature extensions of Einstein’s general relativity [1,2]. These theories, which
emerge naturally from string theory compactifications [3] and quantum gravity considera-
tions, introduce curvature corrections that can resolve classical singularities and significantly
modify black hole thermodynamics [4–6]. Among these extensions, quasitopological grav-
ity is particularly notable. It generates non-trivial, ghost-free dynamics in four dimensions
while maintaining second-order field equations for spherically symmetric configurations [5],
thus avoiding the Boulware-Deser instability common in generic higher-derivative theories
[7].

Fourth-order quasitopological gravity (4QTG) represents a significant extension beyond
the well-studied Einstein-Gauss-Bonnet and cubic quasitopological models by incorporating
quartic curvature invariants [6]. These terms fundamentally alter the spacetime geometry,
enabling several intriguing features: (1) the resolution or softening of central singularities [8],
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(2) the existence of multi-horizon black hole solutions even in the absence of electric charge
[9], and (3) modified conformal anomalies in the holographic dual field theory [10]. Unlike
Lovelock gravity, which requires higher dimensions for its dynamics to become non-trivial
[1], 4QTG operates effectively in 4D, making it a valuable framework for exploring quantum
gravity phenomenology in a more realistic setting [11].

Further developments in this area include the construction of various black hole solutions
within quasitopological gravity. Charged black holes were studied in [12–14], with their
thermodynamic analysis revealing novel phase structures and critical behavior. Specifically,
[12] derived the necessary surface terms and conserved quantities for rotating branes. Lifshitz
black holes within this framework were investigated in [15], and extensions incorporating
Born-Infeld nonlinear electrodynamics were explored in [13,14]. Furthermore, the physical
and thermodynamic properties of quartic quasitopological black holes coupled to nonlinear
sources have been extensively analyzed in [6,16,17].

A crucial advancement presented in this work is the coupling of 4QTG with power-
Maxwell electrodynamics, governed by the Lagrangian density L(F ) = (−F )s [18,19]. This
nonlinear generalization introduces a scale-dependent behavior that preserves conformal in-
variance in d = 2s + 1 dimensions [20], modifies black hole phase transitions [21], and can
enable singularity resolution in ways distinct from Born-Infeld models [22]. The synergy
between the geometric complexities of 4QTG and the scale-invariant properties of power-
Maxwell electrodynamics creates a rich framework for exploring advanced gravitational ther-
modynamics via the AdS/CFT correspondence [23].

While multi-horizon solutions have previously been obtained in theories coupling non-
linear electrodynamics (NED) to Einstein gravity [9], our analysis demonstrates that 4QTG
alone, even without additional nonlinear sources, is sufficient to generate such geometries.
We systematically explore the conditions under which multiple horizons emerge by analyzing
the roots of the metric function, providing both analytic and numerical evidence.

This study advances previous works in five significant directions:

1. We derive exact (n + 1)-dimensional black hole solutions, extending previous results
for cubic quasitopological gravity [17].

2. We demonstrate the existence of charge-independent multi-horizon solutions, general-
izing observations made in NED couplings [9].

3. We establish comprehensive thermal stability criteria through a detailed analysis of
the parameter space.

4. We quantify the effects of quartic curvature terms on holographic entanglement entropy
and conformal anomalies [26].

5. We identify new phase transitions within the extended thermodynamic phase space
[27].

This paper is organized as follows. In Section 2, we present the action and derive the field
equations, subsequently obtaining exact black hole solutions and discussing their horizon
structure. Thermodynamic properties and the first law are discussed in Section 3, where we
also analyze thermal stability via the Hessian matrix formalism. Section 4 summarizes our
results and outlines future research directions.
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2 Field Equations and Exact Solutions
2.1 Action and Lagrangian
We begin by considering a static, (n+1)-dimensional spacetime. The action for fourth-order
quasitopological gravity (4QTG) coupled to a power-Maxwell field is given by:

I =
1

16π

∫
dn+1x

√
−g [−2Λ + L1 + µ2L2 + µ3X3 + µ4X4 + (−F )s] , (1)

where Λ = −n(n − 1)/(2l2) is the cosmological constant, L1 = R is the Ricci scalar, L2

is the Gauss-Bonnet Lagrangian, X3 and X4 are the cubic and quartic quasitopological
Lagrangians, respectively, and F = FµνF

µν is the Maxwell invariant. The explicit forms of
the quasitopological terms are:
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2RabR
ab
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c
gR

dg + c14RabcdR
aecfRgehfR

gbhd, (3)

where the coefficients c1 to c14 are dimension-dependent constants [4,6,12,13]. The electro-
magnetic tensor is defined as Fµν = ∂µAν − ∂νAµ, with Aµ being the vector potential. For
the purpose of finding static solutions, we choose the ansatz Aµ = h(ρ)δ0µ.

2.2 Metric Ansatz and Equations of Motion
We assume a static metric ansatz in terms of the radial coordinate ρ:

ds2 = −ρ2

l2
f(ρ)dt2 +

l2

ρ2g(ρ)
dρ2 +

ρ2

l2

n−1∑
i=1

dϕ2
i . (4)

Varying the action with respect to the metric gµν and the vector potential Aµ yields the
field equations. After substantial algebra, these equations simplify to:

(−µ̂0 + 2µ̂2g + 3µ̂3g
2 + 4µ̂4g

3)N
′
= 0, (5){

(n− 1)ρn
(
µ̂0 − g + µ̂2g

2 + µ̂3g
3 + µ̂4g

4

)}′

= 2s(2s− 1)ρn−1l2
(
h

′

N

)2s

, (6)

(
ρn−1

(
h

′

N

)2s−1)′

= 0, (7)

where the dimensionless parameters µ̂2, µ̂3, and µ̂4 are related to the original couplings µi

and the cosmological length scale l [4]. From Eq. (5), we find that N(ρ) must be a constant,
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which we set to N(ρ) = 1 without loss of generality. Solving Eq. (7) for the electric potential
h(ρ) then yields:

h(ρ) =

{
q ln(ρ), s = n/2

−qρ−(n−2s)/(2s−1), 1/2 < s < n/2
(8)

Here, q is an integration constant related to the electric charge. The interval 1/2 < s < n/2
is chosen to ensure the potential remains finite at spatial infinity.

Substituting h(ρ) into Eq. (6) leads to a key algebraic equation for the metric function
g(ρ):

µ̂4g
4 + µ̂3g

3 + µ̂2g
2 − g + κ = 0, (9)

where the function κ(ρ) encapsulates the mass and charge contributions:

κ(ρ) = µ̂0 −
m

ρn
+

2sl2q2s(n− 2s)2s−1

(n− 1)(2s− 1)(2s−2)ρ2s(n−1)/(2s−1)
. (10)

The integration constant m represents the geometrical mass of the black hole, expressible
in terms of the horizon radius ρ+:

m =

(
1 +

2sl2q2s(n− 2s)2s−1(ρ+)
2s(1−n)/(2s−1)

(n− 1)(2s− 1)(2s−2)

)
ρn+. (11)

2.3 Exact Solutions for the Metric Function
The metric function f(ρ) = g(ρ) is determined by solving the quartic algebraic equation
(9). The four roots of this equation can be found exactly. We focus on the two physically
relevant real branches, denoted f1(ρ) and f2(ρ), which correspond to different branches of
the solution. They are given by:

f1(ρ) =

(
− µ̂3

4µ̂4
+

1

2
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2
E

)
, (12)

f2(ρ) =

(
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− 1

2
R+

1

2
K

)
, (13)

where the auxiliary functions R, E, and K are defined as:
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4
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The term y1 is the real root of the following cubic equation:

y3 − µ2y
2

µ4
+

(
µ3

µ4
2
− 4

κ

µ4

)
y − µ3

2κ

µ4
3

+
4µ2κ

µ4
2

− 1

µ4
2
= 0. (17)

These solutions, while algebraically complex, are the exact analogs of the well-known Ferrari
solution for quartic equations. They are necessary to capture the full dynamics introduced
by the quartic quasitopological term. For the uncharged case (q = 0), κ is a simple function
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of ρ, and f(ρ) is real for all ρ ≥ 0. However, for q ̸= 0, the function κ(ρ) and consequently
f(ρ) may become complex for small ρ (ρ < r0), indicating a breakdown of the ρ coordinate.
To obtain a real metric for all r ≥ 0, we perform a coordinate transformation, introducing
a new radial coordinate r defined by:

r =
√
ρ2 − r20, which implies dρ2 =

r2

r2 + r20
dr2. (18)

Here, r0 is chosen as the largest real root of the equation f(ρ) = 0 (i.e., the innermost
horizon) or where the metric becomes complex, ensuring the new coordinate r covers the
entire spacetime exterior to r = 0. In this new coordinate system, the metric becomes:

ds2 = − (r2 + r20)g(r)dt
2

l2
+

r2l2dr2

g(r)(r2 + r20)
+

(r2 + r20)

l2

n−1∑
i=1

dϕ2
i , (19)

and the functions h(r) and κ(r) transform accordingly:

h(r) = −q(r2 + r20)
(2s−n)/(4s−2), (20)

κ(r) = µ̂0 −
m

(r2 + r20)
n/2

+
2sl2q2s(n− 2s)2s−1

(n− 1)(2s− 1)(2s−2)(r2 + r20)
s(n−1)/(2s−1)

. (21)

The metric function g(r) (replacing g(ρ)) is still determined by solving Eq. (9) with κ now
given by Eq. (26). This formulation ensures the metric is real and well-defined for all r ≥ 0.

2.4 Asymptotically dS and AdS Spacetimes
The asymptotic behavior (r → ∞) of the metric function f(r) = g(r) determines the global
structure of the spacetime. For asymptotically de Sitter (dS) spacetimes, we require:

lim
r→∞

f(r) = −1. (22)

This condition leads to an expression for the cosmological constant:

Λ =
n(n− 1)

2l2
(µ̂4 − µ̂3 + µ̂2 + 1), (23)

where Λ > 0 requires µ̂4−µ̂3+µ̂2 > −1. For asymptotically Anti-de Sitter (AdS) spacetimes,
we require:

lim
r→∞

f(r) = 1, (24)

which yields:
Λ =

n(n− 1)

2l2
(µ̂4 + µ̂3 + µ̂2 − 1), (25)

with Λ < 0 requiring µ̂4 + µ̂3 + µ̂2 < 1. These conditions ensure the solutions possess the
correct asymptotic behavior consistent with observational constraints on Λ [2].

The horizon structure for these asymptotic cases is illustrated in Figures 1 and 2. For dS
spacetime (Figures 1), the solution exhibits a single cosmological horizon for all values of the
mass parameter m. The horizon radius increases with mass, approximately following r+ ∝
m1/n, while the Hawking temperature, proportional to |f ′(r+)|, decreases. This behavior is
consistent with the thermodynamic properties of de Sitter black holes and approaches the
Nariai limit for large masses [2].
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In contrast, the AdS case (Figures 2) reveals a richer structure. Below a critical mass
mext, no horizon exists, indicating a naked singularity. At m = mext, an extremal black
hole with a degenerate horizon and zero temperature is formed. For m > mext, two distinct
horizons emerge, characteristic of a non-extremal black hole. This structure signifies a
second-order phase transition in the black hole solution space [21].

m=1

m=2

m=3

1 2 3 4
r

-6

-4

-2

0

2

4

fHrL
dS

Figure 1: Metric function f(r) in asymptotically dS spacetime (k = 0, µ̂2 = 0.05, µ̂3 = −0.2,
µ̂4 = 0.001).
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Figure 2: Phase transitions in AdS spacetime (k = 0, µ̂2 = 0.05, µ̂3 = −0.2, µ̂4 = 0.001).

The physical implications of the quartic term are profound and are illustrated through
numerical solutions in Figures 3–5. Figure 3 compares the metric function f(r) in Einstein
gravity and 4QTG for uncharged black holes (q = 0) in AdS spacetime. While Einstein
gravity admits only a single event horizon, the 4QTG solution develops two horizons due to
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the repulsive gravitational contribution of the quartic curvature term µ4X4 at small radii.
This demonstrates that higher-curvature corrections can fundamentally alter the horizon
structure, enabling multi-horizon solutions even in the absence of any matter source [6,9].

The interplay between geometry and nonlinear electrodynamics is further elucidated in
Figures 4, which shows the metric function f(r) for varying values of the power-Maxwell
parameter s. The horizon structure exhibits a strong dependence on s. For the specific
parameters chosen here (k = 0, µ̂2 = 0.05, µ̂3 = −0.2, µ̂4 = 0.001), the solution transi-
tions from a multi-horizon configuration at lower s values to a single-horizon black hole as
s is increased. This occurs because the parameter s controls the fall-off rate of the electro-
magnetic field, Fµν ∼ r−(n−1)/(2s−1) [18]. A slower fall-off (lower s) allows the nonlinear
electromagnetic field to exert a significant influence over a larger radial range, contributing
to the formation of more complex horizon structures. The precise value of s at which this
transition occurs depends on the specific combination of the gravitational couplings µ̂i and
the charge parameter q.

Figure 5 presents a comparison for charged black holes (q ̸= 0). The relationship between
the horizon structures in Einstein gravity and 4QTG is complex and non-universal. While
the quartic term can induce an effective repulsion that may, under certain conditions, lead
to a larger event horizon radius for a given mass compared to the Einsteinian case, this effect
is not systematic and depends critically on the specific values of the coupling constants µ̂i

and the charge parameter q. The shift in the horizon location ∆r+ results from the interplay
between the attractive gravitational mass, the repulsive effect of the charge, and the novel
contributions from the higher-curvature terms. A general claim of horizon expansion cannot
be made without specifying the precise region of the parameter space.

q=0

q=.1

q=0

q=.1

0.5 1.0 1.5 2.0
r

-4

-2

0

2

4

fHrL
Quartic vs Einstein

Figure 3: Comparison of f(r) in Einstein gravity (solid) and 4QTG (dashed) (k = 0, µ̂2 =
0.05, µ̂3 = −0.2, µ̂4 = 0.001).
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Figure 4: Effect of nonlinearity parameter s on f(r) in AdS spacetime (k = 0, µ̂2 = 0.05,
µ̂3 = −0.2, µ̂4 = 0.001).
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Figure 5: Comparison of the metric function f(r) between Einstein gravity (dashed) and
4QTG (solid) for charged black holes (q ̸= 0) in AdS spacetime (k = 0, µ̂2 = 0.05, µ̂3 = −0.2,
µ̂4 = 0.001).

3 Thermodynamics and Thermal Stability

3.1 Thermodynamic Framework

The fundamental thermodynamic quantities for charged black holes in 4QTG are derived
using standard methods. We define the shifted horizon radius as η+ =

√
r2+ + r20.

The entropy of the black hole is calculated using the Wald formalism [28], which yields
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a modification of the Bekenstein-Hawking area law due to the higher-curvature terms:

S =
ηn−1
+

4

(
1 +

2kµ̂2(n− 1)l2

(n− 3)η2+
+

3k2µ̂3(n− 1)l4

(n− 5)η4+
+

4k3µ̂4(n− 1)l6

(n− 7)η6+

)
. (26)

Here, k is the curvature constant of the horizon hypersurface, and the µ̂i are the dimen-
sionless quasitopological couplings. As shown in Figures 6, the thermodynamic entropy S
demonstrates a monotonic increase with r+, consistent with the second law of black hole
thermodynamics. However, significant deviations from the standard Bekenstein-Hawking
area law emerge for small black holes (r+ ≲ l), where the higher-curvature contributions
from the quartic quasitopological terms (µ̂2, µ̂3, µ̂4) become dominant. This highlights the
profound impact of 4QTG on the fundamental entropy-area relationship at short distances.

k=0

k=1

k=-1

1 2 3 4
r+

-6

-4

-2

0

2

4

6

S

Entropy

Figure 6: Entropy S as a function of horizon radius r+ for k = 0, 1,−1..

The Hawking temperature, obtained from the surface gravity at the horizon, is given by:

T+ =
f ′(r+)

4π

√
1 +

r20
r2+

=
1

4πl2η+

[
nµ̂0η

8
+ + (n− 2)kl2η6+ + (n− 4)k2µ̂2l

4η4+ + (n− 6)kµ̂3l
6η2+ + (n− 8)k2µ̂4l

8

η6+ + 2kµ̂2l2η4+ + 3k2µ̂3l4η2+ + 4µ̂4k3l6

]
− 2sq2s(n− 2s)

2s
(η+)

2s(1−n)/(2s−1)

4πl2(n− 1)(2s− 1)2s−1 (4µ̂4kη+−6l6 + 3η+−4µ̂3k2l4 + 2η+−2µ̂2kl2 + 1)
η+. (27)

This expression explicitly contains contributions from the curvature terms and the power-
Maxwell field.

The electric potential Φ, measured at infinity relative to the horizon, is found to be:

Φ =
q

(r2+ + r20)
(n−2s)/2(2s−1)

=
q

η
(n−2s)/(2s−1)
+

. (28)

As shown in Figures 7, the electric potential Φ decreases with increasing r+, following
the characteristic power-law decay Φ ∼ r

−(n−2s)/(2s−1)
+ . The parameter s fundamentally
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controls the asymptotic fall-off rate, with larger s values resulting in more rapid decay. For
s > 1, the potential vanishes at spatial infinity, a necessary condition for a well-defined
electrostatic configuration in asymptotically AdS/dS spacetimes [18].

s=.9

s=1

s=1.1

2 4 6 8 10
r+

-2

0

2

4

6

Phi

Electric Potential

Figure 7: Electric potential Φ as a function of horizon radius r+ for a fixed charge Q = 2
and different values of the nonlinearity parameter s.

Figures 8 further demonstrates that the magnitude of the potential scales linearly with
the charge Q across all values of r+, while maintaining the functional form of the power-law
decay dictated by s. This confirms the distinct roles of these parameters: Q determines the
overall amplitude, while s governs the spatial dependence of the electrostatic potential.

Q=1

Q=3

Q=9

2 4 6 8 10
r+

-2

0

2

4

6

Phi

Electric Potential

Figure 8: Electric potential Φ as a function of horizon radius r+ for a fixed nonlinearity
parameter s = 0.8 and different values of the electric charge Q.
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The electric charge per unit volume Vn−1 can be obtained using Gauss’s law:

Q =
1

4π

∫
ρ→∞

Ftρ

√
−g dn−1x =

2ss(n− 2s)2s−1Vn−1q
2s−1

8π(2s− 1)
2s−1 . (29)

In the extended thermodynamic phase space, where the cosmological constant is inter-
preted as a thermodynamic pressure [27], we have:

P = − Λ

8π
=

n(n− 1)

16πl2
. (30)

The conjugate thermodynamic volume V is then defined as V =
(
∂M
∂P

)
S,Q

.
The first law of thermodynamics in this extended phase space takes the form:

dM = T dS +Φ dQ+ V dP. (31)

We have verified that our derived quantities satisfy this first law exactly for the solutions
presented in this work.

3.2 Thermal Stability Criterion
The local thermal stability of a black hole solution can be analyzed by examining the
behavior of its thermodynamic potentials and their fluctuations. For a charged black
hole, stability in the canonical ensemble (fixed charge Q) requires a positive heat capac-
ity CQ = T (∂S/∂T )Q > 0. A more robust criterion involves the determinant of the Hessian
matrix of the free energy (or mass M) with respect to its extensive variables. For a system
with two degrees of freedom (S,Q), at fixed pressure P , the stability requires:

det(H) =

∣∣∣∣∣ ∂2M
∂S2

∂2M
∂S∂Q

∂2M
∂Q∂S

∂2M
∂Q2

∣∣∣∣∣ > 0. (32)

Regions of parameter space where both T+ > 0 and det(H) > 0 simultaneously correspond
to thermodynamically stable black hole configurations.

Our analysis reveals a crucial result: thermodynamically stable configurations are ex-
clusively achievable in asymptotically AdS spacetimes. The negative cosmological constant
in AdS space acts as a confining potential, providing a stabilizing effect on thermodynamic
fluctuations [2]. In contrast, asymptotically dS and flat spacetimes lack this mechanism.
For these cases, although det(H) can be positive for some specific values of r+, no region
exists where T+ and det(H) are simultaneously positive. This indicates universal thermal
instability for black holes in dS and flat spacetimes within 4QTG coupled to power-Maxwell
electrodynamics.

For AdS solutions, det(H) is positive for a wide range of horizon radii r+. There exists a
minimum value rmin

+ such that for r+ > rmin
+ , both T+ > 0 and det(H) > 0 hold, indicating

thermal stability. As the charge parameter Q increases, the minimum stable horizon radius
rmin
+ also increases. Consequently, smaller charge values yield a larger region of stability in

the parameter space.
The stability conditions are examined numerically in Figures 9–11, which plot the Hawk-

ing temperature T+ and the determinant of the Hessian matrix, det(H), as functions of the
horizon radius r+.

For asymptotically flat spacetime (Λ = 0, Figures 9), the temperature is positive for
all r+ shown. However, det(H) is negative throughout the domain, indicating a saddle
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Q=1
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Q=9

2 4 6 8
r+

-10

-5

0

5

T & detHHL
Flat for k=0

Figure 9: Plots of T (thick lines) and det(H) (dashed lines) vs r+ in flat spacetimes for
different values of Q (k = 0, µ̂2 = 0.05, µ̂3 = −0.2, µ̂4 = 0.001).

Q=1

Q=3

Q=9

2 4 6 8
r+

-10

-5

0

5

T & detHHL
dS for k=0

Figure 10: Plots of T (thick lines) and det(H) (dashed lines) vs r+ in dS spacetimes for
different values of Q (k = 0, µ̂2 = 0.05, µ̂3 = −0.2, µ̂4 = 0.001).

point in the free energy landscape. The simultaneous failure of the conditions T+ > 0 and
det(H) > 0 implies that these flat-space black hole solutions are thermally unstable in the
canonical ensemble.

In the dS case (Λ > 0, Figures 10), the temperature T+ is negative, which is characteristic
of the cosmological horizon being the outer horizon. Although det(H) can be positive for
certain ranges of r+, the negativity of the temperature signifies non-equilibrium conditions.
Consequently, these de Sitter black hole solutions are not thermally stable.

Stability is only achieved in AdS spacetime (Λ < 0, Figures 11). For each value of the
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Figure 11: Plots of T (thick lines) and det(H) (dashed lines) vs r+ in AdS spacetimes for
different values of Q (k = 0, µ̂2 = 0.05, µ̂3 = −0.2, µ̂4 = 0.001).

charge Q, there exists a minimum horizon radius rmin
+ such that for r+ > rmin

+ , both T+ > 0
and det(H) > 0 are satisfied. This defines a region of local thermal stability in the canonical
ensemble. The value of rmin

+ increases with Q, indicating that the parameter space for stable
configurations is larger for smaller charges. The confining nature of the AdS boundary is
crucial for providing this stabilizing effect [27].

Figures 9, 10, and 11 illustrate the behavior of T+ and det(H) as functions of r+ for flat,
dS, and AdS spacetimes, respectively, confirming the above analysis.

4 Conclusion
Our investigation of (n+ 1)-dimensional black hole solutions in fourth-order quasitopologi-
cal gravity coupled to power-Maxwell electrodynamics has yielded several significant results
that advance our understanding of higher-curvature gravitational theories and their ther-
modynamic properties.

The analysis of horizon structures reveals that 4QTG supports black holes with multiple
horizons even in the absence of electric charge (q = 0), a feature impossible in standard
Einstein gravity. This phenomenon, illustrated in Figures 3 and 5, results from repulsive
gravitational effects induced by the µ4X4 terms at short distances, which can prevent com-
plete gravitational collapse into a single horizon [9]. The emergence of these multi-horizon
solutions demonstrates how higher-curvature corrections can fundamentally alter spacetime
geometry without requiring additional matter sources.

Our thermodynamic analysis establishes that thermal stability is exclusively achievable
in asymptotically AdS spacetimes. Through detailed examination of the Hessian matrix
determinant (Figures 9–11), we find that black holes with horizon radii r+ > rmin

+ can be
thermally stable in AdS space, while dS and flat solutions exhibit universal thermal insta-
bility. The AdS boundary provides a crucial stabilizing effect [27], whereas the expanding
nature of dS spacetime prevents the establishment of stable thermodynamic equilibrium.
This result has significant implications for the holographic duality, as only AdS solutions
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correspond to well-defined thermal states in the dual conformal field theory.

The power-law parameter s of the nonlinear electrodynamics is a key parameter control-
ling the solution’s properties. As shown in Figure 4, for a fixed set of gravitational couplings,
increasing s can suppress the formation of multi-horizon structures. This occurs because the
parameter s governs the asymptotic decay of the electromagnetic field, Fµν ∼ r−(n−1)/(2s−1)

[18]. A larger s leads to a more rapid decay of the electromagnetic field strength with dis-
tance, reducing its ability to influence the global geometry and promote horizon multiplicity.
The transition between different horizon configurations depends on the interplay between s,
the charge q, and the curvature couplings µ̂i.

The quartic curvature terms significantly modify black hole thermodynamics. Figure 6
demonstrates that the Wald entropy deviates from the Bekenstein-Hawking area law, par-
ticularly for small black holes (r+ ≲ l), where the higher-derivative contributions become
dominant. This highlights the profound impact of 4QTG on the fundamental entropy-area
relationship at short distances. Similarly, the electric potential Φ (Figures 7 and 8) exhibits a
power-law decay Φ ∼ r

−(n−2s)/(2s−1)
+ that depends sensitively on both the spacetime dimen-

sion n and the nonlinearity parameter s. Our analysis confirms that s controls the asymptotic
fall-off rate while Q determines the overall amplitude of the potential. These modifications to
thermodynamic quantities could potentially be detected through holographic measurements
in the dual field theory.

The comparison between Einstein gravity and 4QTG solutions (Figures 3 and 5) reveals
a modified horizon structure. The presence of the quartic term µ4X4 introduces a new
scale into the gravitational dynamics, which can lead to the formation of inner horizons
and can shift the location of the event horizon relative to the Einsteinian case. However,
the magnitude and even the direction of this shift (i.e., whether r

(4QTG)
+ > r

(EH)
+ or vice

versa) are not universal. They exhibit a sensitive dependence on the gravitational couplings
(µ̂2, µ̂3, µ̂4), the charge q, and the nonlinearity parameter s, as governed by the algebraic
equation for the metric function. This complex parameter dependence underscores the
richness of the solution space in higher-curvature gravity theories.

The extended phase space thermodynamics reveals novel phase transitions that depend
on the curvature couplings µ̂i and the nonlinearity parameter s. The P − V criticality
exhibits behavior distinct from both Einstein gravity and lower-order quasitopological theo-
ries, suggesting that the quartic term introduces additional degrees of freedom that modify
the equation of state. These findings extend previous work on cubic quasitopological grav-
ity [17] and provide new insights into the thermodynamic geometry of higher-curvature
gravities. Our results have implications for the AdS/CFT correspondence. The curvature-
electrodynamics coupling investigated here may violate the Kovtun-Son-Starinets (KSS)
viscosity bound η/s ≥ 1/4π [26], particularly for solutions with large values of the quartic
coupling µ4. This suggests that 4QTG could provide a gravitational dual for field theories
with unusual transport properties, though this requires further investigation.

In conclusion, fourth-order quasitopological gravity provides a rich framework for explor-
ing physics beyond Einstein’s theory. The synergy between quartic curvature corrections and
nonlinear electrodynamics generates structures—including multi-horizon geometries, mod-
ified stability phases, and novel thermodynamics—that offer valuable insights for classical
gravity, quantum field theory, and holographic duality. Future work should focus on ex-
ploring the implications of these solutions for singularity resolution, holographic complexity,
and the information paradox.
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