The Radiative Transfer in Accretion Discs with Linear Plank Function: Role of Scattering Effect

Document Type : Research Paper


1 Department of Physics, University of Birjand, Birjand, Iran

2 Department of Physics‎, ‎Faculty of Sciences‎, ‎Ferdowsi University of Mashhad‎, ‎Mashhad‎, ‎91775-1436‎, ‎Iran


Radiative transfer in a geometrically thin accretion disc with fnite optical depth is considered under the plane-parallel approximation. The Eddington factor that is defned as the ratio of the mean intensity to radiation stress tensor, is assumed be constant. We have focused our attention on the scattering effect and the optical depth. The emergent intensity as well as other radiative quantities are analytically obtained related to the vertical structure of disc while a linear Planck function is applied. The effect of scattering on the radiative quantities is considered for two cases: (i) isothermal and (ii) temperature gradient and both cases are assumed to be in local thermodynamical equilibrium (LTE), too. Our results show the scattering for an isothermal atmosphere is more signifcant than an atmosphere with temperature gradient. Moreover, the emergent intensity is changed by the disc optical depth. We also explore the limb-darkening effect for the both thick and thin optically discs, separately.


[1] Adam, J., Storzer, H., Shaviv, G., & Wehrse, R. 1988, A&A, 193, L1.
[2] Artemova, I. V., Bjornsson, G., & Novikov, I. D. 1996, ApJ, 461, 565.
[3] Cannizzo, J. K., & Wheeler, J. C. 1984, ApJS, 55, 367.
[4] Castor, J. I. 2004, Radiation Hydrodynamics, Cambridge University Press.
[5] Davis, S. W., Blaes, O. M., Hubeny, I., & Turner, N. J. 2005, ApJ, 621, 372.
[6] Fukue, J. 2011, PASJ, 63, 1273.
[7] Fukue, J., & Akizuki, C. 2006, PASJ, 58, 1039.
[8] Hubeny, I., Agol, E., Blaes, O., & Krolik, J. H. 2000, ApJ, 533, 710.
[9] Hubeny, I. 1990, ApJ, 351, 632.
[10] Kato, S., Fukue, J., & Mineshige, S. 2008, Black-Hole Accretion Discs , Kyoto University Press.
[11] Kato, S., Fukue, J., & Mineshige, S. 2008, Black-Hole Accretion Discs, Kyoto University Press.
[12] Mihalas, D. 1970, Stellar Atmospheres, Freeman W. H., San Francisco.
[13] Mihalas, D., & Mihalas, B. W. 1984, Foundations of Radiation Hydrodynamics, New York: Oxford University Press.
[14] Meyer, F., & Meyer-Hofmeister, E. 1982, A&A, 106, 34.
[15] Ross, R. R., Fabian, A. C., & Mineshige, S. 1992, MNRAS, 258, 189.
[16] Rybicki, G. B., & Lightman, A. P. 1979, Radiative Processes in Astrophysics, New York: John Wiley & Sons.
[17] Shaviv, G., & Wehrse, R. 1986, A&A, 159, L5.
[18] Shimura, T., & Takahara, F. 1995, ApJ, 440, 610.
[19] Shu, F. H. 1991, The Physics of Astrophysics, Vol. 1 Radiation, Mill Valley, CA: University Science Book.
[20] Wang, J. M., Szuszkiewicz, E., Lu, F. J., & Zhou, Y. Y. 1999, ApJ, 522, 839.