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Abstract. Radiative transfer in a geometrically thin accretion disc with finite optical
depth is considered under the plane-parallel approximation. The Eddington factor that
is defined as the ratio of the mean intensity to radiation stress tensor, is assumed be
constant. We have focused our attention on the scattering effect and the optical depth.
The emergent intensity as well as other radiative quantities are analytically obtained
related to the vertical structure of disc while a linear Planck function is applied. The
effect of scattering on the radiative quantities is considered for two cases: (i) isothermal
and (ii) temperature gradient, and both cases are assumed to be in local thermody-
namical equilibrium (LTE) too. Our results show that scattering for an isothermal
atmosphere is more significant than an atmosphere with temperature gradient. More-
over, the emergent intensity is changed by the disc optical depth. We also explore the
limb-darkening effect for the both thick and thin optically discs, separately.
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1 Introduction

Accretion disc around a central object is an accepted paradigm in order to describe several
energetic phenomena either on small scales, like discs around Young stellar object (YSO),
or Cataclysmic variable stars (CV) or on large scales, like AGNs or quasars. The main
idea of accretion discs lies in the fact that falling matter releasing gravitational potential
energy, heats the gas, and generates radiation. Moreover, the accreting masses possess a
considerable amount of angular momentum per mass unit which has to be removed in order
to be accreted into the central object. What causes the lost of angular momentum is the
friction caused by turbulent viscosity working between adjacent gas layers in the disc. Since
the process of the angular momentum removal occurs on slower timescales compared to the
free-fall time, infalling gas with sufficiently high angular momentum can form a disc-lice
structure around central body, which can be thin or thick depending upon the geometrical
shape. The different models of accretion discs depending on the geometry of the disc (thin
or thick), process of energy emission and outward angular momentum transfer have been
extensively studied during the past four decades (see [10] for a review).

The study of radiation hydrodynamics is followed by several excellent monographs (e.g.,
[13, 16, 4]). In accretion discs, matter emits or absorbs radiation, while radiation gives (or
remove) energy and momentum to (or from) matter. The behavior of radiation interacting
with matter is known as radiative transfer. Radiative transfer in the accretion disc has been
investigated in relation to the structure of a static disc atmosphere and the spectral energy
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distribution from the disc surface by several authors( [14, 3, 15, 5]). The accretion-disc
atmosphere differs from the stellar atmosphere in some aspects ([17, 1, 20, 10]): (i) Viscous
heating in the atmosphere may exist as an energy source for radiation. (ii) The gravitational
acceleration is quite different from that of a star. (iii) The optical depth of the disc is finite.
(iv) The scattering may be dominant in some cases.

The radiative-transfer equations are given in many textbooks ([12, 13, 19, 11]). In order
to solve these equations, some approximations are employed. In many cases the diffusion or
Eddington approximation provides a satisfactory description in an optically thin regime as
well as in an optically thick one. Moreover, in the accretion disc the physical quantities have
gradients in the horizontal (radial) direction. However, the ratio of the radial gradient of
the physical quantities to the vertical gradient is generally on the order of Z/r. Hence, the
plane-parallel approximation, which is usual for the stellar atmosphere, can be also valid, as
long as the disc is geometrically thin. Furthermore, gray approximation, where the opacity
is assumed to be independent of frequency, and non-gray approximation, where the opacity
does not depend on frequency, was developed under numerical treatments ([18, 8, 5]) and
under analytical ones ([9, 2, 7]). The analytical solutions of the radiative-transfer equations
beside the development of the numerical codes can be useful to clarify the properties of
radiative transfer in such systems.

Fukue (2011) solved analytically the radiative transfer equations and studied scattering
effects on the radiative quantities for the linear plank function and uniform-heating cases.
The result of his work showed the scattering has a significant effect on the radiative quantities
and the emergent intensity becomes a modified blackbody spectrum. In this paper, we
reexamine radiative transfer equations for both optically thin and thick discs with a linear
plank function and proper boundary conditions. Here, we assume that the optical depth of
disc is finite which cause our work becomes different from that of Fukue (2011). In the next
section, we will describe the basic equations. In section 3, we show analytical solutions. The
final section is devoted to concluding remarks.

2 Basic Assumptions and Equations

In this section, we derive the radiative-transfer equations in the vertical direction (z). To
begin with, we here consider the following standard assumptions:
(i) The disc is steady and axisymmetric.
(ii) It is also geometrically thin and plane parallel.
(iii) The viscous heating rate is concentrated at the equator or uniform in the vertical di-
rection.
(iv) The non-gray approximation, where the opacity depend on frequency, is adopted.
(v) The disc atmosphere is under local thermodynamic equilibrium (LTE) i.e. jν = 4πκνBν
which jν , Bν are the mass emissivity and Plank function, respectively.
(vi) As a closure relation, we use the Eddington approximation in the sense that Kν = fJν
where Jν , Kν and f are the mean intensity, the mean radiation stress and Eddington factor,
respectively.

On the basis of these assumptions and simplifications, the radiative-transfer equations
are involved in the frequency-integrated transfer equation, the zeroth moment equation, and
the first moment equation that can be respectively written as follows:

µ
dIν
dz

= ρ

[
jν
4π
− (κν + σν)Iν + σνJν

]
, (1)
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dHν

dz
= ρ

[
jν
4π
− κνJν

]
, (2)

dKν

dz
= −ρ

(
κν + σν

)
Hν , (3)

where µ is the direction cosine (= cosθ ), I the specific intensity, Hν the Eddington flux and
ρ the gas density. The absorption opacity, κν , and the scattering one, σν , generally depend
on the frequency. We define the source function as:

Sν =
1

κν + σν

jν
4π

+
σν

κν + σν
Jν = ενBν + (1− εν)Jν , (4)

where εν = σν/(σν+κν) is the photon destruction probability. Introducing the optical depth
τν as: dτν ≡ −ρ

(
κν + σν

)
dz, we can rewrite the above equations as follow

µ
dIν
dτν

= Iν − Sν , (5)

dHν

dτν
= Jν − Sν , (6)

d(fJν)

dτν
= Hν , (7)

Also, the total optical depth of the disc is:

τν0 = −
∫ 0

h

ρ(κν + σν)dz, (8)

where h is the disc half-thickness. The radiative-transfer equations governing atmosphere
of such disc are represented by equations (5)-(7). It is still hard to solve this system of
equations with several kinds (i.e. algebraic, differential and integral equations). Similar to
the stellar atmosphere, we assume that the Planck function, B(ν), linearly be depend on
the optical depth. In the next section, we will solve the basic equations of this system for a
semi-infinite optical depth with proper boundary conditions.

3 Linear Plank function

In order to explain the scattering effect and the effect of the finite optical depth, we find
radiative quantities for a simple case proposed for the stellar atmosphere. In this case, we
assume that:

Bν = Bν0 + bντν , (9)

Now referring to the basic equations (4), (6) and (7), we have:

d2

dτ2ν
(fJν)− ε(Jν −Bν) = 0, (10)

The Eddington factor, f is given by

f(τ) =
1 + τν
1 + 3τν

, (11)
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Figure 1: Solutions for simple case: Variation of the first coefficient of Jν normalized by
Bν0 = Bν(τν = 0) (which is omitted in a disc with infinite optical depth) with respect to
the disc optical depth, τν0.

However, in the plan-parallel case, we can employ the approximation of f = 1
3 (Kato et al.

2008). With this selection (i. e f = 1/3), we obtain a simple analytical solution for the
ordinary differential equation (10)

Jν = Bν + C1e
√
εν/fτν + C2e

−
√
εν/fτν (12)

If we consider an optically thick disc with τν → ∞, we find C1 = 0. However, for a disc
with finite optical depth τb, we use a different boundary condition as:

Hν(τb) = 0, → dJν
dτν

∣∣∣∣
τν=τb

= 0 (13)

The other boundary conditions are defined at τν = 0:

Hν(0) = Hν0, (14)

Jν(0) = cνHν0, (15)

So we have:

f
dJν
dτν

∣∣∣∣
τν=0

=
Jν(0)

cν
(16)

Then, we find the two constants of Jν as:

C1 = −
Bν0
√
εν + bν

√
f [eτb

√
εν/f (1 + cν

√
fεν)− cν

√
fεν ]

√
εν [e2τb

√
εν/f (1 + cν

√
fεν)− cν

√
fεν + 1]

(17)

C2 =
−Bν0 + bνcνf + C1(cν

√
fεν − 1)

cν
√
fεν + 1

(18)

Fukue (2011) studied the linear Plank function for a disc with infinite optical depth. As
seen in figure (1), the first coefficient of Jν tends to zero when a disc becomes optically thick
and this is in agreement with the result of Fukue (2011). According to Fig.(1), C1 decreases
considerably as εν or τν0 increases. Moreover, this coefficient is less effective in the absence



Radiative Transfer In Accretion Discs 71

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ΤΝ

J
Ν
HΤ
Ν
L�

B
Ν
0

HaL bΝ=0, ΤΝ0=1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

ΤΝ

J
Ν
HΤ
Ν
L�

B
Ν
0

HbL bΝ=3BΝ0, ΤΝ0=1

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

ΤΝ

J
Ν
HΤ
Ν
L�

B
Ν
0

HcL bΝ=0, ΤΝ0=20

ΕΝ=0.01

-- ΕΝ=0.1

..... ΕΝ=0.5

-.- ΕΝ=1

0 5 10 15 20
0

5

10

15

20

25

30

ΤΝ

J
Ν
HΤ
Ν
L�

B
Ν
0

HdL bΝ=3BΝ0, ΤΝ0=20

Figure 2: Variation of mean intensity, Jν normalized by Bν0 = Bν(τν = 0) with respect to
the optical depth, τν .

of the temperature gradient (bν = 0 shows an isothermal acretion flow). Using Eq.(7), (9)
and (12) yields the Eddington flux:

Hν = bνf +
√
fεν(C1e

√
εν/fτν − C2e

−
√
εν/fτν ) (19)

And the source function is found by substituting Bν and Jν (Eq.(9), (12) ) in equation (4):

Sν = Bν0 + bντν + (1− εν)(C1e
√
εν/f0τν + C2e

−
√
εν/f0τν ) (20)

In figures (2) and (3), we have plotted Jν and Hν with respect to the optical depth, τν .
These quantities have been obtained with constant Eddington factor. The effect of scattering
on the radiative quantities have been considered at these two figures. All plots in Fig.(2)
show that a rise in the scattering effect (or a decrease in εν) causes the mean intensity, Jν
falles considerably or slightly (depending on the disc optical depth) in a given optical depth
τν . In panels (a)-(c), we notice that the scattering effect is more remarkable in regions with
thinner optical depth (τν < 2), whereas in panel (d) differences apear in parts with large
optical depth. Moreover, as seen in top panels of this figure, when the disc is optically
thin, Jν for both isothermal and temperature gradient cases has similar trend with respect
to τν ; i.e. this quantity gradually grows as optical depth, τν , increases. In the bottom
panels of Fig.(2), the disc is assumed to be ratherly optically thick and then we see the
behavior of Jν becomes much more different for the isothermal and temperature gradient
cases. In the isothermal case (Fig.2c), the value of function Jν increases with respect to
optical depth for smaller depths (τν . 5) and tends to the constant, Bν0, as optical depth
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Figure 3: Variation of Eddington flux, Hν normalized by Bν0 = Bν(τν = 0)] with respect
to the optical depth, τν .

becomes larger (τν & 5). On the other hand, in temperature gradient case (Fig.2d), Jν
increases approximately linearly with respect to optical depth τν . Unlike the plots of panel
(c), here differences between adjacent plots (with several values of εν) are very small or even
ignorable with τν . 2. Generally, we can conclude that the scattering is less effective in
optically thick regime.

Now in Fig.3, the Eddington flux Hν is studied to examine the influences of τν , εν and
τν0. As this figure represents the value of the Eddington flux at the surface of disc (τν = 0)
declines noticeably by increasing the scattering effect (smaller εν ’s). Moreover, Hν reduces
from the surface towards the equatorial plane (τν = τν0), and the slope of this reduction
becomes steeper by growing the scattering effect. Like Jν , the function of Hν is very sensitive
to the temperature distribution in the disc and also its total optical depth. The effect of
parameter εν is more visible for the optically thin discs. Focusing on the bottom panels of
Fig.(3), we notice that Hν becomes roughly constant with respect to τν and also under the
influence of various εν ’s. Nevertheless, this uniform part is located near the surface of the
non-isothermal disc (with bν = 3Bν0), whereas Hν seems unchanged close to the darkest
region of the isothermal (optically thick) disc.

Using the above solutions, we can also solve the transfer equation (5) to obtain the
intensity, Iν :

±µdI
±
ν

dτν
= I±ν − Jν (21)

where the sign of ± is positive for outward intensity, I+ν , and it is negative for inward one,
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Figure 4: Emergent intensity, I+ν (τν = 0, µ) normalized by Bν0 = Bν(τν = 0)] as a function
of the direction cosine, µ.

I−ν . We use the following boundary conditions:

I−ν (0, µ) = 0, (22)

I+ν (τν0, µ) = Iν0 + I−ν (τν0, µ) (23)

where Iν0 is the uniform incident intensity, showing the equatorial heating rate and the
second term is the inward intensity from the back side of the flow beyond the midplane
(Fukue & Akizuki 2006, Fukue 2012). After some manipulations, the outward intensity I+ν
and inward intensity I−ν are obtained as:

I±ν (τν , µ) = Bν0+bν(τ±µ)+e−
√
εν/fτν

√
f

(
C1e

2
√
εν/fτν

√
f ∓ µ√εν

+
C2√

f ± µ√εν

)
+C±e

∓τν/µ (24)

C− = −Bν0 + bνµ−
√
f

(
C1√

f + µ
√
εν

+
C2√

f − µ√εν

)
(25)

C+ = C−e
−2τν0/µ + 2µbνe

−τν0/µ − 2µ
√
fεν

f − µ2εν
e−τν0(1/µ+

√
εν/f)

(
C1e

2τν0
√
εν/f − C2

)
(26)

Finally, the emergent intensity, I+ν (0, µ), emitted from the disc surface becomes:

I+ν (0, µ) = Bν0 + µbν +
√
f

(
C1√

f ∓ µ√εν
+

C2√
f ± µ√εν

)
+ C+. (27)

Panels of Fig.4 display the emergent intensity normalized by the surface value Bν0 with re-
spect to direction cosine µ for isothermal case (top ones) and for the case with a temperature
gradient (bottom ones). The effect of scattering and finite optical depth are shown at these
plots. Their common feature is that the emergent intensity diminishes in all of them as the
photon destruction probability, εν , decreases, hence we can say the scattering effect has this
role to reduce intensity significantly. In the case of discs with very thin optical depth (Fig.4a,
4d) , I+ν with smaller values of µ is greater than that with larger µ’s. Figure 4 reveals that
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Figure 5: Variation of normalized outward specific intensity, I+ν , with respect to the optical
depth, τν . The other parameters are µ = 1 and εν = 0.5.

in discs with optical depth less than unity, the limb brightening happens regardless of the
scattering’s influence or any initial assumptions (which we have considered in this paper).
However, when the disc optical depth tends to unity, the outgoing radiation along the polar
axis becomes less than one along the equatorial plane. Consequently, the limb-brightening
effect disappears in both panels (b) and (e). The third column of Fig.4 shows the intensity
coming from an optically (ratherly) thick disc. Although, for both top and bottom panels
the emergent intensity increases with adding µ and we have limb-darkening, more differences
between plots in panel (c) than panel (f) are seen. This can be referred to the more effec-
tive role of scattering in panel (c) than panel (f). Generally, as it is easily seen in bottom
panels of Fig.4, the effect of finite optical depth on the emergent intensity is similar for both
isothermal and non isothermal discs. Nevertheless, the presence of scattering on the emitted
radiation intensity becomes less and less important as the disc optical depth increases. In
figure (5), the outward intensity I+ν is shown as a function of optical depth τν . Here, we
have focused on the effect of temperature gradient on the outward intensity. As can be seen
in three panels of this figure, the larger temperature gradient makes the outward intensity
increase approximately linearly (which implies that the second term of I+ν in Eq.(24) is
dominant comparing with the other terms including bν). Comparing this figure with the
previous one, we find some similarities in the behavior of intensity under the influence of µ
and τ . This might (again) indicate that the second term of Eq.(24) emergent intensity is
more effective than other terms to change intensity with these two parameters (µ and τ).
Like Fig.(5), the trend of plots varies signifacantly with different values of τν0. Depending
on the disc optical depth, the emergent intensity can decrease or increase towards deeper
optical depths.

4 Summary and Conclusions

In this paper, we solved the radiative transfer equations of a geometrically thin accretion
disc while focusing attention on the scattering effect. We applied the approximation of LTE
(jν = 4πκνBν) and assumed that the Plank function Bν is a linear function of τν . By
using constant Eddington factor f = 1

3 and under a consistent manner, we could obtain
analytically expressions for the emergent intensity Iν as well as other radiative quantities
(i.e, Jν and Hν).

The effect of scattering on the radiative quantities is considered for isothermal and tem-
perature gradient cases. We also explore the behavior of the radiative quantities for an
optically thin disc and an optically thick disc, separately. The plots revealed the mean in-
tensity and Eddington flux are more sensitive to the scattering factor in optically thin discs.
Therefore, we can conclude that the scattering is less effective in optically thick regime.
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Also, the plots of the mean intensity and Eddington flux with respect to the optical depth
illustrated they grows in the opposite directions. Regarding radiation from the disc’s surface,
we found out that the parameter of εν has a positive effect on growing the emergent intensity
I+ν (τν = 0, µ) especially in discs with smaller optical depth. However, for the second case,
the temperature gradient can influence its impact as there were seen much more coincidences
in curves with different εν related to a non-isothermal optically thick disc rather than that
in an isothermal disc with the same τν0. We also showed the emergent intensity with respect
to the direction cosine µ. The usual limb darkening effect is seen for large optical depths.

Here we employed the some assumptions to solve the radiative transfer equations. We
neglect wind and the relativistic effects. However, in a realistic model, these effects should
be be taken into account which can improve our theoritical studies. Also, we can substitute
the assumption of plane-parallel with spherical atmosphere and use a the variable Eddington
factor; other researchers can take this into account.

References

[1] Adam, J., Storzer, H., Shaviv, G., & Wehrse, R. 1988, A&A, 193, L1.

[2] Artemova, I. V., Bjornsson, G., & Novikov, I. D. 1996, ApJ, 461, 565.

[3] Cannizzo, J. K., & Wheeler, J. C. 1984, ApJS, 55, 367.

[4] Castor, J. I. 2004, Radiation Hydrodynamics, Cambridge University Press.

[5] Davis, S. W., Blaes, O. M., Hubeny, I., & Turner, N. J. 2005, ApJ, 621, 372.

[6] Fukue, J. 2011, PASJ, 63, 1273.

[7] Fukue, J., & Akizuki, C. 2006, PASJ, 58, 1039.

[8] Hubeny, I., Agol, E., Blaes, O., & Krolik, J. H. 2000, ApJ, 533, 710.

[9] Hubeny, I. 1990, ApJ, 351, 632.

[10] Kato, S., Fukue, J., & Mineshige, S. 2008, Black-Hole Accretion Discs , Kyoto University
Press.

[11] Kato, S., Fukue, J., & Mineshige, S. 2008, Black-Hole Accretion Discs, Kyoto University
Press.

[12] Mihalas, D. 1970, Stellar Atmospheres, Freeman W. H., San Francisco.

[13] Mihalas, D., & Mihalas, B. W. 1984, Foundations of Radiation Hydrodynamics, New
York: Oxford University Press.

[14] Meyer, F., & Meyer-Hofmeister, E. 1982, A&A, 106, 34.

[15] Ross, R. R., Fabian, A. C., & Mineshige, S. 1992, MNRAS, 258, 189.

[16] Rybicki, G. B., & Lightman, A. P. 1979, Radiative Processes in Astrophysics, New
York: John Wiley & Sons.

[17] Shaviv, G., & Wehrse, R. 1986, A&A, 159, L5.

[18] Shimura, T., & Takahara, F. 1995, ApJ, 440, 610.



76 Fahimeh Habibi et al.

[19] Shu, F. H. 1991, The Physics of Astrophysics, Vol. 1 Radiation, Mill Valley, CA: Uni-
versity Science Book.

[20] Wang, J. M., Szuszkiewicz, E., Lu, F. J., & Zhou, Y. Y. 1999, ApJ, 522, 839.


