Omori’s Law in the Occurrence of Solar Flare : Approach of Hybrid Model

Document Type : Research Paper

Author

Department of Basic Science, Faculty of Shahid Mofateh, Hamedan Branch, Technical & Vocational University (TVU), Hamedan, Iran

Abstract

Solar flares are large-scale phenomena that have a significant effect on the
Earth’s climate. Using the solar flare time series from January 1, 2006 to July 21, 2016,
we develop a complex network for predicting solar flares. In the work, hybrid model
is employed to construct complex network. In addition to the position of the flares
and their occurrence times, the energy of events based on the Telesca-lovallo model
is also used to develop solar flare network. Using constructed complex network, the
Omori’s law for fore flare and after flares associated with a main flare are retrieved. The
frequency of occurrence of solar flares decreases over time as a power law. Statistical
analysis of flaring events catalogues indicates that a power-law dependence characterizes
the occurrence of both fore flares and after flares corresponding to a main flare. The
hybrid model reconstructs the Omori’s law for fore flare–after flare process associated
with a main event.

Keywords


[1] Priest, E. R., & Forbes, T. G. 2002, A&AR, 10, 313.
[2] Wheatland, M. S. 2005, SpWea, 3, S07003.
[3] Barnes, G., & Leka, K. D. 2008, ApJL, 688, L107.
[4] Raboonik, A., Safari, H., Alipour, N., & Wheatland, M. S. 2016, ApJ, 834, 11.
[5] Aschwanden, M. J. 2012, ApJ, 757, 94.
[6] de Arcangelis, L., Godano, C., Lippiello, E., & Nicodemi, M. 2006, PhRvL, 96, 051102.
[7] Lotfi, N., & Darooneh, A. H. 2012, EPJB, 85, 23.
[8] Karimi, S., & Darooneh, A. H. 2013, PhyA, 392, 287.
[9] Rezaei, S., Darooneh, A. H., Lotfi, N., & Asaadi, N. 2017, PhyA, 471, 80.
[10] Lacasa, L., Luque, B., Ballesteros, F., Luque, J., & Nuno, J. C. 2008, Proc Natl Acad Sci U S A, 105, 4972.
[11] Telesca, L., & Lovallo, M. 2012, EPL, 97, 50002.
[12] Omori, F. 1894, Journ. Coll. Sci. Imp. Univ. Tokyo, 7, 111.
[13] Utsu, T., & Ogata, Y. 1995, Phys. Earth Planet. Inter, 43, 1.
[14] Guglielmi, A. V. 2016, Izv. Phys. Solid Earth, 52, 785.
[15] McGuire, J. J., Boettcher, M. S., & Jordan, T. H. 2005, Nature, 434, 457.
[16] Gheibi, A., Safari, H., & Javaherian, M. 2017, ApJ, 847, 115.
[17] Gheibi, A., Safari, H., & Javaherian, M. 2018, VizieR Online Data Catalog, 184.
[18] Yousefzadeh, M., Safari, H., Attie, R., & Alipour, N. 2016, SoPh, 291, 29.
[19] Honarbakhsh, L., Alipour, N., & Safari, H. 2016, SoPh, 291, 941.
[20] Alipour, N., & Safari, H. 2015, ApJ, 807, 175.
[21] Alipour, N., Safari, H., & Innes, D. E. 2012, ApJ, 746, 12.
[22] Abe, S., & Suzuki, N. 2005, EPJB, 44, 115.
[23] Abe, S., & Suzuki, N. 2006, PhRvE, 74, 026113.
[24] Abe, S., & Suzuki, N. 2007, EPJB, 59, 93.
[25] Najafi, A., Darooneh, A. H., Gheibi, A., & Farhang, N. 2020, ApJ, 894, 66.
[26] Lippiello, E., Bottiglieri, M., Godano, C., & de Arcangelis, L. 2007, Geophys. Res. Lett, 34, L23301.
[27] Zavyalov, A. D., Guglielmi, A. V., Zotov, O. D., & Lavrov, I. P. 2018, October, (DEEP2018), Beijing, China (p. 271).
[28] Braun, O. M., & Peyrard, M. 2019, EPL, 126, 49001.
[29] Davidsen, J., Gu, C., & Baiesi, M. 2015, Geophys. J. Int. 201, 965.
[30] Shcherbakov, R., Turcotte, D. L., & Rundle, J. B. 2004, Geophys. Res. Lett., 31, L11613.