The Temperature and Mass Effects on Dust Grain Electrical Potential in Dusty Plasma

Document Type : Research Paper

Authors

Department of Physics, Mashhad Branch, Islamic Azad University, Mashhad, Iran

Abstract

By orbit-limited motion (OLM) theory and the kinetic model, currents carried by electrons
and ions on the dust grain are obtained and the effects of temperature and drift velocity of ions on the
dust grain electrical potential are considered. The calculations were performed for finding the role of densities of dust grains and ions on the dust grain electrical potential which is the main factor in determining the tendency of the grain for acquiring more charge. It is shown that the dust grain electrical potential and thus the dust grain charge are affected by density of ions (electrons) and dust grain. Moreover, it is found that as the ratio of temperature electron-to-ion is raised, the plasma with heavier ions experiences the larger electric potential of the dust grain. Furthermore, it is indicated that the dust grain electrical potential for the potassium plasma is significantly higher than the oxygen plasma. Finally, it is shown that by decreasing the dust grain electrical potential and the electron temperature, the drift velocity of ions is increased.

Keywords


[1] Morfill, G. E., & Ivlev, A. V. 2009, Rev. Mod. Phys., 81, 1353.
[2] Gong, J.,& Du, J. 2012, Phys. Plasma, 19, 023704.
[3] Tang, X. Z., & Delzanno, G. L., 2014, Phys. Plasma, 21, 123708.
[4] Barkan, A., Angelo, A. N., & Merlino, R. L. 1994, Phys. Rev. Lett., 73, 3093.
[5] Friedrich, M., Torkar, K. M., Hoppe, U. P., Bekkeng, T. A., Barjatya, A., & Rapp, M. 2013, Ann. Geophys., 31, 135.
[6] Bacharis, M., Coppins, M., & Allen, J. E. 2010, Phys. Rev. E, 82, 026403.
[7] Krasheninnikov, S. I., Smirnov, R. D., & Rudakov, D. L. 2011, Plasma Phys. Control. Fusion, 53, 083001. [8] Whipple, E. C. 1981, Rep. Prog. Phys., 44, 1197.
[9] Verheest, F. 1996, Space Sci. Rev., 77, 267.
[10] Tsallis, C., Prato, D., & Plastino, A. R. 2004, Ap&SS, 290, 259.
[11] Draine, B. T. 2003, Ann. Rev. Astron. Astrophys., 41, 241.
[12] Mendis, D., & Rosenberg, M. 1994, Ann. Rev. Astron. Astrophys., 32, 419.
[13] Saleem, H., Moslem, W. M., & Shukla, P. K. 2012, J. Geophys. Res., 117 (A), 08220.
[14] Rantsev-Kartinov, V. A. 2007, IEEE Trans. Plasma Sci., 35, 767.
[15] Podesta, J. J. 2008, Phys. Plasma, 15, 122902. [16] Lourek, I., & Tribeche, M. 2019, Physica A, 517, 522.
[17] Popel, S. I., & Gisko, A. A. 2006, Nonlinear. Proc. Geophys., 13, 223.
[18] Salimullah, M., Sandber, I., & Shukla, P. K. 2003, Phys. Rev. E., 68, 027403.
[19] Kumari, J., & Pandey, R. S. 2009, Adv. Space Res., 63, 2279.
[20] Mott-Smith, H. M., & Langmuir, I. 1996, Phys. Rev., 28, 727.
[21] Al’Pert, Y. L., Gurevich, A. V. & Pitaevskii, L. P. 1996, Am. J. Phys., 34, 544.
[22] M Lampe J. 2001, Plasma Phys. 65 171.
[23] Delzanno, G. l., Lapenta, G., & Rosenberg, M. 2004, Phys. Rev. Lett., 92, 035002.
[24] Willis, C. T. N., Coppins, M., Bacharis, M., & Allen, J. E. 2010, Plasma Sources Sci. Technol. ,19, 065022.
[25] Allen, J. 192, Phys. Scr., 45, 497.
[26] Kennedy, R. V., & Allen, J. E. 2003, J. Plasma Phys., 69, 485-506.
[27] Delzanno G. L. 2013, IEEE Trans. Plasma Sci, 41, 3577.
[28] Moreira, D. A., Albuquerque, E. L., da Silva, L. R., Galv˜ao, D. S., & Moreira, D. A. 2008, Physica A, 387, 5477.
[29] J¨uttner, F. 1991, Ann. Phys, 339, 856.
[30] Hasegawa, A., Mima, K., & Duong-van, M. 1985, Phys. Rev. Lett. 54 2608.
[31] Chen, F. F., Etievant, C. & Mosher, D. 1968, Phys. Fluids, 11, 811.
[32] Gradshteyn, S., & Ryzhik, I. M. 2007, Table of Integrals, Series, and Products (Elsevier: Academic Press, Seventh Edition) Ch 2, Sec 3, p 106.
[33] Havnes, O., Goertz, C. K., Morfill, G. E., Grn, E.,& Ip, W. 1987, J. Geophys. Res. Space Phys., 92(A3), 2281.
[34] Barkan, A., Angelo, N. D., & Merlino, R. L. 1994, Phys. Rev. Lett., 73, 3093.
[35] Shukla, P.K., & Mamun, A. A. 2002, Introduction to Dusty Plasma Physics (IOP Publishing Ltd) Ch 2, Sec 2, p 39.