Multi fluidity and Solitary wave stability in cold quark matter: core of dense astrophysical objects

Authors

Department of Physics, Ferdowsi University of Mashhad, 91775-1436 Mashhad, Iran

Abstract

Considering the magneto-hydrodynamic equations in a non-relativistic multi uid framework, we study the behavior of small amplitude perturbations in cold quark matter. Magneto-hydrodynamic equations, along with a suitable equation of state for the cold quark matter, are expanded using the reductive perturbation method. It is shown that in small amplitude approximation, such a medium should be considered as a multi- uid system. The result is a nonlinear wave equation which complies with a modi ed form of the derivative nonlinear Schrodinger equation instead of the KdV equation. Considering the magnetic eld which is supported by the Maxwell's equations, we show that the complete set of equations, create stable solitary waves. An interesting result is the existence of an electric eld component along the direction of magnetic eld which causes a small charge separability in the medium. Properties of this solitonic solution are studied by considering different values for the environmental characters such as background mass density and strength of the magnetic eld (at the scale of compact stars).

Keywords


[1] B. Muller, The Physics of the Quark Gluon Plasma. Lecture Notes in Physics, 225, Springer-Verlag Berlin Heidelberg (1985).
[2] D. Enstrom, arXiv:hep-ph/ 9802337.
[3] K. Yagi, T. Hatsuda and Y. Miake , "Quark Gluon Plasma: From Big Bang to Little Bang" ,Cambridge University Press, Cambridge, UK (2005).
[4] S. Sarkar, H. Satz and B. Sinha, The Physics of the Quark-Gluon Plasma :Introductory Lectures. Lect. Notes Phys. 785, Springer-Verlag Berlin Heidelberg (2010).
[5] J. R. Ellis, J. Phys. Conf. Ser 50, 8 (2006).
[6] B. A. Li, C. M. Ko, Phys. Rev. C 52, 2037 ( 1995).
[7] M. J. Alford, Phys. G: Nucl. Part. Phys 30, S441 (2004).
[8] A. Schmitt, Lect. Notes Phys 811: 1-111 (2010).
[9] C. Alcock , E. Farhi and A. V. Olinto, ApJ 310, 261 (1986).
[10] A. V. Olinto, Phys. Lett. B 192, 71 (1987).
[11] S. L. Shapiro, S. A. Teukolsky , "Black Holes, White Dwarfs and Neutron Stars : The Physics of Compact Objects", New York, USA: Wiley (1983).
[12] R. C. Duncan, C. Thompson, ApJ 392, L9 ( 1992).
[13] P. Ch. Chu, L. W. Chen and X. Wang, Phys. Rev. D 90, 063013 (2014).
[14] K. S. Cheng, Z. G. Dai, Phys. Rev. Lett 77, (7) 1210 (1996).
[15] E. Gourgoulhon, EAS Publ. Ser 21, 43 ( 2006).
[16] H. Washimi, T. Taniuti, Phys. Rev. Lett 17, 996 (1966).
[17] D. A. Fogaca, F. S. Navarra and L. G. Ferreira Filho, Williams, Matthew C.: Solitons: Interactions, Theoretical and Experimental Challenges and Perspectives 191 (2012).
[18] D. A. Fogaca, L. G. Ferreira Filho and F. S. Navarra, Phys. Rev. C 81, 055211 (2010).
[19] D. A. Fogaca, F. S. Navarra and L. G. Ferreira Filho, Phys. Rev. C 88, 025208 (2013).
[20] D. A. Fogaca, F. S. Navarra, Phys. Lett. B 645, 408( 2007).
[21] G. N. Fowler et al, Phys. Lett. B 115 , (4) 286 (1982).
[22] D. A. Fogaca, F. S. Navarra and L. G. Ferreira Filho, Phys. Rev. D 84, 054011 (2011).
[23] A. Ra_ei, K. Javidan, Phys. Rev. C 94, 034904 ( 2016).
[24] A. Ghaani, K. Javidan and M. Sarbishaei, Astrophys. Space Sci 358, (1) 20 (2015).
[25] D. A. Fogaca, S. M. Sanches and F. S. Navarra, arXiv:hep-ph/1706.02991.
[26] D. M. Gomez, R. Soler and J. Terradas, ApJ 832, 101 ( 2016).
[27] L. Selyuzhenkov ( for the STAR Collaboration), arXiv: nucl-ex/0910.0464.
[28] Q. Wang, "Charge Multiplicity Asymmetry Correlation Study Searching for Local Parity violation at RHIC for STAR collaboration", Springer Theses, Switzerland (2013).
[29] T. Kakutani, T. Kawahara and T. Taniuti, J. Phys. Soc. Japan 23, 1138 (1967).
[30] T. Kakutani et al, J. Phys. Soc. Japan 24, (5) 1159 (1968).
[31] D. A. Fogaca et al, Phys. Rev. C 94, 055805 (2016).
[32] B. Franzon et al, Phys. Rev. D 86, 065031 (2012).
[33] K. Javidan, Astrophys. Space Sci 343, 667 (2013).
[34] D. J. Rischke et al, Phys. Lett. B 278, 19 (1992).
[35] E. Shuryak, Nucl. Phys. A 750, 64 (2005).
[36] V. M. Bannur, Phys. Lett. B 362, 7 (1995).
[37] V. V. Begun, M. I. Gorenstein and O. A. Mogilevsky, Int.J.Mod.Phys.E20 1805 (2011).
[38] D. A. Fogaca, and F. S. Navarra, Phys. Lett. B 700, 236 (2011).
[39] D. A. Fogaca, S. M. Sanches Jr. and F. S. Navarra, Nucl. Phys. A 937, 48 (2018).
[40] N. Kumar , K. M. Srivastara, Astrophys. Space Sci, 184 (1), 49 (1991).
[41] E. Kengne , W. M. Liu , Phys. Rev. E , 73, 026603 (2006).
[42] R. J. Deissler , H. R. Brand, Phys. Lett. A 146, 252(1990).
[43] A. Rogister, Physics of Fluids 14, 2733 (1971).
[44] D. J. Kaup , A. C. Newell, J. Math. Phys 19, 798 (1978).
[45] E. Mjolhus, J. Phys. Scripta 40, 227(1989).
[46] A. Reisenegger, arXiv:1305.2542v1 [astro-ph.SR]
[47] J. Liu et al, Phys. Rev. D 84, 125027 (2011).
[48] M. Fortin, J. L. Zdunik, P. Haensel, M. Bejger, A & A 576, A68 (2015).