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Abstract. Considering the magneto-hydrodynamic equations in a non-relativistic
multi fluid framework, we study the behavior of small amplitude perturbations in cold
quark matter. Magneto-hydrodynamic equations, along with a suitable equation of
state for the cold quark matter, are expanded using the reductive perturbation method.
It is shown that in small amplitude approximation, such a medium should be consid-
ered as a multi-fluid system. The result is a nonlinear wave equation which complies
with a modified form of the derivative nonlinear Schrodinger equation instead of the
KdV equation. Considering the magnetic field which is supported by the Maxwell’s
equations, we show that the complete set of equations, create stable solitary waves. An
interesting result is the existence of an electric field component along the direction of
magnetic field which causes a small charge separability in the medium. Properties of
this solitonic solution are studied by considering different values for the environmental
characters such as background mass density and strength of the magnetic field (at the
scale of compact stars).

1 Introduction

Soon after establishing the idea of asymptotic freedom in quantum chromodynamics (QCD),
possibility of the existence of quark gluon plasma (QGP) or quark matter at high tem-
perature (above 150 ∼ 200MeV ) and/or high density (upper than the nuclear density,
ρ0 ∼ 3.0 × 1017Kg/m3) was established [1, 2, 3, 4]. Based on these two conditions, we
should expect to find QGP in few milliseconds after the Big Bang [3, 5], at initial states of
high energy heavy ion collisions, which is currently being experimentally pursued [3, 6], and
in the core of super dense astronomical objects, such as neutron stars, magnetars and quark
stars [2, 3, 7, 8].

At sufficiently high densities and low temperatures, as in the dense interior of massive
neutron stars, hadrons are melted into cold quark matter consist of a Fermi sea of free quarks
[9, 10]. Nowadays, the astronomical observations indicate the existence of huge magnetic
field, from 108T at the surface to 1013T in the core of neutron stars [11, 12, 13]. Also, the
collapse of a white dwarf to a neutron star happens with an extremely strong magnetic field
[14]. Therefore, it is not surprising that a large number of recent works have been presented
to investigate the role of strong magnetic fields on the behavior of dense quark matter.

But, there are few studies on the collective behavior and long range interactions in
the quark matter and QGP, modified by magnetic fields in the framework of magneto-
hydrodynamics (MHD). The set of magneto-hydrodynamic equations are a combination of:
I) fluid dynamic equations which the Navier-Stokes equation is essentially the simplest equa-
tion describing the motion of a fluid in the non-relativistic framework [15], II) the continuity
equations and III) the Maxwell’s equations. These differential equations with different types
of nonlinearity and dispersion terms can be solved mainly numerically. Important charac-
ters of propagating waves inside these media are derived by using an approximation method
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which is able to save the nonlinear behavior of equations and provide small amplitude solu-
tions describing long range effects in the system. This is the Reductive Perturbation Method
(RPM) which is a helpful technique preserving nonlinear, dispersive and dissipative effects
of the QGP medium in relevant differential equations [16, 17].

A number of striking works on the propagation of nonlinear waves inside the QGP,
mostly in the absence of magnetic field through the continuity and momentum equations
and considering different models for the equation of state, have been presented which predict
the existence of unstable long range behaviors in the framework of the KdV like equations
with breaking and shock profiles [17, 18, 19]. Almost all presented equations of state,
containing special parts which provide a nonlinear term in the equation of motion. But
for establishing stable solitonic solution in the framework of KdV equation, we need a
dispersion term too. This part of the KdV equation can be created through a Laplacian
term in the energy density which adds a cubic derivative respect to the space coordinate. In
the electromagnetic plasmas, this issue is provided by the Laplace equation of the electric
potential while in the QGP, there is not same situation at the first order of approximation.
Indeed, the most accepted field theoretical models do not have higher derivative terms in
their leading orders. Such terms may be appeared in higher orders of approximations which
are usually negligible [20]. One can expand the mass density according to the derivatives
of space coordinate, if the mass density of the medium is not in its equilibrium state [21].
Therefore, higher derivatives are able to create the dispersive term in the KdV equation.

The gluon field in cold quark gluon plasmas is very large, because of high densities
in these situations. If we assume that the coupling constant is not very small and is not
spatially constant, the existence of intense gluon field implies that the bosonic fields tend
to have large occupation numbers, and therefore higher derivative terms is appeared in the
spatial expansion of related term in the energy density [22]. Using above models (as well
as other methods), one can add a weak dispersive term to the KdV equation; however it is
sufficient for stabilizing small amplitude solitary waves. We have shown that such localized
effects even in the shape of breaking waves are long lasting enough to create detectable
signatures in the border of QGP medium [23].

Most of the QGP media have been created in an electromagnetically rich environments.
Neutron stars, pulsars and magnetars are examples of compact astrophysical objects where
the cold and dense nuclear matter and/or QGP may exist. The magnetic field in such
objects typically is very high. This means that investigating behavior of these media without
considering the magnetic field can not be realistic. It is shown that presenting a fixed extreme
but external magnetic field stabilizes breaking or shock waves in cold QGP media. In other
words, if external magnetic field is enough strong, breaking waves are changed into stable
solitary profiles which are governed by the ZakharovKuznetsov (ZK) equation [24] (but not
a KdV equation!). In such situations, we have not need to consider small nonlinear terms
which are generally so weak. Indeed, the solitonic solutions of the ZK model are stable
by themselves. A realistic result can be extracted through solving the full equations of
the system by considering the internal magnetic field created in the QGP matter by itself.
According to our best of knowledge, evolution of localized waves due to collective behaviors
and long rage interactions by considering the full equations of the system has not been
investigated before. It is clear that without these results, our knowledge about the wave
propagation in such media is incomplete. We will see the results are completely different
with our previous knowledge. Here, we focus on models in which the quark matter or the
QGP environment consist of two light flavors (u and d quarks) and a high flavor (s quark).
The bulk QGP is given as a near ideal Fermi liquid and the mQCD model is used as equation
of state. It may be noted that this model is not able to create any dispersive term. Cold
QGP in an external magnetic field as a multi fluid system has been investigated recently,
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but without considering the self magnetic field due to QGP constituents [25]. Stability
conditions have been investigated in this paper but propagation of nonlinear waves has not
been studied. Indeed, we have to consider induced magnetic field due to motion of plasma
particles as well as nonlinear wave propagation to find more realistic knowledge about the
system and collective effects therein.

Outlines of this paper are as follows: In the next section we briefly present the magne-
tohydrodynamic equations in non-relativistic QGP. In the section III, a review for the QGP
equation of state according to the mQCD model is given. We expand the system of equa-
tions using the reductive perturbation method and derive a nonlinear equation for system
variables at zero temperature, in the section IV. The solitonic solution for the derived equa-
tion is obtained in section V. In the section VI we discuss on the properties of the localized
wave describing the evolution of transverse magnetic field perturbations and the last section
is devoted to some concluding remarks.

2 Magneto-hydrodynamic equations of QGP

The core of neutron stars which consist of cold QGP or quark matter is known as a super-
fluid. QGP species have different charges and due to the magnetic field, they find different
trajectories in their media. Although, the whole fluid motion is supported by a certain
velocity, every particle can take a specific velocity which is different and the effect of this
difference in creating perturbation is important. This means that we have to apply the
multi fluid approach to describe the system equation of motion [24, 25, 26]. Separation of
QGP constituents in term of their charges due to strong magnetic field has also been proven
experimentally [27, 28].

For describing the magneto-hydrodynamics, we can write a system of equations which are
governed by a conservation law, the energy-momentum equations of motion and evolution
of the electromagnetic field through the Maxwell’s equations[17, 24, 29, 30]. For simplifying,
we suppose that QGP consists of three flavors u, d, s which have the following masses: mu =
2.2MeV , md = 4.7MeV and ms = 96MeV and their respective charges are: Qu = 2Qe/3
, Qd = −Qe/3 and Qs = −Qe/3 where Qe is the absolute value of the electron charge.So,
the set of equations can be written as following:

∂ρBi

∂t
+∇.(ρBivi) = 0 (1)

ρmi

(
∂

∂t
+ vi.∇

)
vi = −∇pi + ρci(E+ vi ×B) (2)

∂B

∂t
= −∇×E (3)

∇×B− ϵµ
∂E

∂t
= µ

∑
i

ρcivi (4)

∇.B = 0 (5)

∇.E =
1

ϵ

∑
i

ρci (6)

Equations (1) and (2) are the baryon density continuity equation and non relativistic equa-
tion of motion, where ρmi, ρBi, ρci and vi denote, the mass density, baryon density, charge
density and the velocity of each quark’s favor respectively. Also, the equations (3)-(6) are
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the Maxwell’s equations with the magnetic field B and the electric vector field E, while ϵ
and µ are effective dielectric constant and magnetic permeability respectively. If we assume
that the net charge of quark mixture is negligible, the global charge neutrality are enforced
by [29, 30, 31]:

ρcu = ρcd + ρcs (7)

and the baryon number density (ρB) conservation implies that [24, 32]:

ρB =
1

3
(ρu + ρd + ρs) (8)

where ρi is the quark number density.
Now, we are trying to combine three sets of momentum equations for three different

particles into one set of equations. Because of the almost identical mass of light quarks
(u, d) respect to the s quark, with a good approximation, we can assume that these two
types of quarks have the same velocity (vu ≃ vd = v′). So that by ignoring the displacement
current[30] and using (7), the equation (4) becomes:

∇×B = µρcs(v
′ − v) (9)

where v is the velocity of s quark. By substituting velocity of light quarks from above
expression into (2) and gathering u, d index, we obtain the electric field in terms of velocity
of s quark and magnetic field. Replacing this electric field in equation of motion for s quark
gives us the following equation:

ρmQGP
dvs

dt
= −∇p+

1

µ
(∇×B)×B

−ρmu + ρmd

µρcs dt
(∇×B)

[
{(∇×B) .∇}v +

d
]

−ρmu + ρmd

(µρcs)2
{(∇×B) .∇} (∇×B) (10)

and supplanting the electric field by using of s quark’s equation of motion (2) in (3) results:

∂B

∂t
= ∇× (v ×B)− ρms

ρcs

(
∇× dv

dt

)
(11)

where d/dt denotes ∂/∂t+ (v.∇). In general, the relationship between the mass density ρm
and the particle density (ρ) is given by ρm = mρ, where m is the particle mass. So, in term
of baryon number density we can write: ρmf = 3mfρBf . For simplifying equations, we need
an additional condition which is supposed as following:

ρu + ρd = αρs (12)

by using this equation , (7) and (8), we can find:

ρs =
3

1 + α
ρB (13)

and

ρmu + ρmd = ρmQGP − ρms =
3α

1 + α
msρB (14)

so that the set of MHD equations becomes:
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∂ρB
∂t

+∇.(ρBv) = 0 (15)

ρmQGP
dv

dt
= −∇p+

1

µ
(∇×B)×B

− αms

µ|Qs| dt
(∇×B)

[
{(∇×B) .∇}v +

d
]

− α(1 + α)ms

3(µ|Qs|)2ρB
{(∇×B) .∇} (∇×B) (16)

∂B

∂t
= ∇× (v ×B) +

ms

|Qs|

(
∇× dv

dt

)
(17)

In this step, we have derived a complete set of equations ((15, (16) and (17)) which
describe time evolution of the cold QGP system. Unfortunately, above equations are highly
nonlinear. We have not allowed to ignore dispersion, dissipation and nonlinear terms as
they play essential roles in the dynamics of the system. Luckily, it is possible to investigate
the behavior of the system by considering all above terms using the reductive perturbation
method (RPM) for small amplitude excitations [16, 18, 33].

3 The QGP equation of state

The equation set (15)-(17) can not be evaluated only if we add another equation, describing
the fluid pressure (p) respect to other variables of the system, which calls equation of state
(EOS). Several equation of states have been proposed for QGP through different approaches.
The MIT bag model [34], strongly interacting QGP model [35], Cornell potential model [36]
are some of the most famous presented EOS for QGP. Another version of MIT bag model
with negative bag constant has been presented [37]. This new EOS satisfies needed conditions
provided in the lattice QCD simulations. The energy density in this model is also similar to
that in the standard bag model, but with a negative value of the bag constant. Therefore,
one can consider modified MIT bag model in calculations. It may be noted that there is not
any model which is completely accepted by physics community. We have used the equation
of state which is called mQCD and was derived in [31, 38]. This model comprises the effect
of magnetic field in the EOS; however, similar procedure can be applied for other forms of
EOS.

The energy density ε, the parallel pressure (p∥) and the perpendicular pressure (p⊥) are
given respectively as following[31, 38, 39]:

ε =
27g2h
16m2

G

ρ2B + B +
B2

8π
+

d,s∑
f=u

|Qf |B
2π2

nf
max∑
n=0

3(2− δn,0)

∫ kf
z,F (n)

0

dkz

√
k2z +m2

f + 2n|Qf |B

(18)

p|| =
27g2h
16m2

G

ρ2B − B − B2

8π
+

d,s∑
f=u

|Qf |B
2π2

nf
max∑
n=0

3(2− δn,0)

∫ kf
z,F (n)

0

dkz
k2z√

k2z +m2
f + 2n|Qf |B

(19)
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p⊥ =
27g2h
16m2

G

ρ2B − B +
B2

8π
+

d,s∑
f=u

|Qf |2B2

2π2

nf
max∑
n=0

3(2− δn,0)n

∫ kf
z,F (n)

0

dkz√
k2z +m2

f + 2n|Qf |B

(20)

The baryon density is given by:

ρB =

d,s∑
f=u

|Qf |B
2π2

nf
max∑
n=0

(2− δn,0)
√
µ2
f −m2

f − 2n|Qf |B (21)

with:

n ≤ nf
max = int

[
µ2
f −m2

f

2|Qf |B

]
(22)

where int[a] explains the integer part of a and muf is the chemical potential for the quark f .
It is defined in [31]ξ = gh

mG
and the MIT bag model that EOS is recovered by selecting ξ = 0.

For a given magnetic field intensity, we choose the values for the chemical potentials muf

which determine the density ρB . We also choose the other parameters such as ξ and B. In
this case, the pressure gradient which we should place in magneto-hydrodynamic equations,
becomes:

∇p =
27g2h
8m2

G

(
ρB

∂ρB
∂x

, ρB
∂ρB
∂y

, ρB
∂ρB
∂z

)
(23)

Also, in the non relativistic limit ε ∼= ρm [17, 19] can be used in MHD equations.
In the next section, we present time evolution equations of the system by introducing

suitable variables using the RPM formalism.

4 The reductive perturbation method

This method is a very powerful way of deriving simplified models describing nonlinear wave
propagation and is based on perturbation expansion which all variables are expanded around
their equilibrium values in terms of the small expansion parameter ϵ [18, 19, 24]. Then, we
apply a stretched coordinates which are connected to Cartesian coordinates. Substituting
the new coordinates and expansion of variables give us the differential equation(s) which
govern the space time evolution of the perturbation. Consider infinitely extended uniform
cold QGP which its physical quantities at equilibrium state are given by [40]:

ρB = ρB0 B = B0êx v = 0

Components of velocity and magnetic field vectors are defined as: v = (vx, vy, vz) and

B = (Bx, By, Bz). Transverse components of velocity (ṽ) and magnetic field (B̃) can be
introduced by following complex quantities:

ṽ = vy + ivz B̃ = By + iBz (24)

We define the stretched coordinates as:

ξ = ϵ(x− λt) η = ϵ3/2y

ζ = ϵ3/2z τ = ϵ2t (25)
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where λ is the wave velocity at linear approximation and ϵ is the expansion parameter, i.e.
ϵ < 1. Here, we can expand the variables in power series of ϵ as follows:

ρB = ρB0 + ϵρ
(1)
B + ...

B̃ = ϵ1/2(B̃(1) + ϵB̃(2) + ...)

ṽ = ϵ1/2(ṽ(1) + ϵṽ(2) + ...)

Bx = B0 + ϵB(1)
x + ...

vx = ϵv(1)x + ϵ2v(2)x + ...

p = p0 + ϵp(1) + ...

ε = ε0 + ϵε(1) + ... (26)

We now use the stretched coordinates (25) and expansions (26) in (15), (16) and (17).
From the lowest order of ϵ, we obtain:

Aλ
∂

∂ξ

(
ṽ(1)

B̃(1)

)
=

(
0
0

)
(27)

where

Aλ =

(
−λ − v2

A

B0

−B0 −λ

)
(28)

and vA is the Alfven velocity which can be derived as:

v2A =
B2

0

µε0
(29)

Also from the equation (28) we have:

λ = vA , ṽ(1) = − vA
B0

B̃(1) (30)

At the order of ϵ2, we can write:

− λ

ρB0

ρ
(1)
B

∂ξ
+

∂v
(1)
x

∂ξ
+

∂v
(1)
y

∂η
+

∂v
(1)
z

∂ζ
= 0 (31)

λε0
∂v

(1)
x

∂ξ
=

27g2h
8m2

G

ρB0
ρ
(1)
B

∂ξ
+

1

µ0

[
B(1)

y

∂B
(1)
y

∂ξ
+B(1)

z

∂B
(1)
z

∂ξ

]
(32)

λ
∂B

(1)
x

∂ξ
= B0

∂v
(1)
y

∂η
+B0

∂v
(1)
z

∂ζ
. (33)

So that the equations (31) and (33) result:

ρ
(1)
B

ρB0
=

v
(1)
x

vA
+

B
(1)
x

B0
(34)

and
∂B

(1)
x

∂ξ
+∇⊥.B

(1)
⊥ = 0 (35)
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where

∇⊥ = (
∂

∂η
,
∂

∂ζ
) , B⊥ = (By, Bz). (36)

Also, from (32) and (34) we arrive at:

v(1)x =
vA

v2A − v2S

[
v2S

B
(1)
x

B0
+

v2A
2

| B̃(1) |2

B2
0

]
(37)

where vS is defined as:

v2S =
27g2h
8m2

G

ρ2B0

ε0
(38)

From the terms of the order ϵ5/2 and using (30), (34) and (37), the following equations can
be written:

∂ṽ(1)

∂τ
− vA

∂ṽ(2)

∂ξ
− v2A

B0

∂B̃(2)

∂ξ
− (1− v2S)v

4
A

B0(v2A − v2S)

(
B

(1)
x

B0
+

|B̃(1)|2

2B2
0

)
∂B̃(1)

∂ξ
=

−∇̃

[
v4A

v2A − v2S

(
B

(1)
x

B0
+

|B̃(1)|2

2B2
0

)]
+ i

3αms

µ|Qe|
∂2B̃(1)

∂ξ2
(39)

and:

∂B̃(1)

∂τ
−B0

∂ṽ(2)

∂ξ
− vA

∂B̃(2)

∂ξ
=

∂

∂ξ

(
ṽ(1)B(1)

x − B̃(1)v(1)x

)
− i

3ms

|Qe|
vA

∂2ṽ(1)

∂ξ2

(40)

ṽ(2), B̃(2), ṽ(1) and v
(1)
x can be eliminated from equations (39) and (40) with using equations

(34) and (37). Thus, we can derive the master equation containing B̃(1), B
(1)
x and their

derivatives as following:

∂B̃(1)

∂τ
−B0∇̃Υ+

∂

∂ξ

(
ΥB̃(1)

)
+ (1− v2S)Υ

∂B̃(1)

∂ξ
+ iC1

∂2B̃(1)

∂ξ2
= 0 (41)

where:

Υ =
1

2

v3A
v2A − v2S

(
B

(1)
x

B0
+

|B̃(1)|2

2B2
0

)
(42)

and

C1 =
3msB0

2µ|Qe|

(
α− 1

ε0

)
(43)

Relations (35) and (41) are the appropriate set of equations governing the evolution of the

transverse (B̃(1)) and longitudinal (B
(1)
x ) magnetic field perturbations. If we neglect the

spatial variation in the transverse direction [40], the equations (35) and (41) reduce to the
following single equation:

∂B̃(1)

∂τ
+ C2

∂

∂ξ

(
|B̃(1)|2B̃(1)

)
+ iC1

∂2B̃(1)

∂ξ2
+ (1− v2S)C2|B̃(1)|2 ∂B̃

(1)

∂ξ
= 0

(44)
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in which:

C2 =
1

4B2
0

v3A
v2A − v2S

(45)

The above wave equation in the Cartesian coordinates (x, t) becomes:

∂ ˆ̃B
(1)

∂t
+ vA

∂ ˆ̃B
(1)

∂x
+ C2

∂

∂x

(
| ˆ̃B

(1)

|2 ˆ̃B
(1)
)

+iC1
∂2 ˆ̃B

(1)

∂x2
+ (1− v2S)C2| ˆ̃B

(1)

|2 ∂
ˆ̃B
(1)

∂x
= 0 (46)

while ˆ̃B
(1)

≡ σ1/2B̃(1). The equation (46) describes the evolution of transverse magnetic
field perturbation. The evolution of baryon density perturbation also can be derived by
applying the (34) and (37) in (46). The above equation is compared with the following
version of the complex Ginzburg-Landau equation:

∂u

∂t
= iP

∂2u

∂x2
+ iγu+ iQ1|u|4u+Q2|u|2

˜∂u

∂x
+Q3u

2 ∂u

∂x
(47)

˜

where all coefficients are real and u is a complex function of space and time (x, t). Equation
(47) is called the derivative nonlinear Schrodinger (DNLS) equation with an additional
potential, or the cubic-quintic Ginzburg-Landau equation [41]. Two terms |u|2∂u/∂x and
u2∂u/∂x are nonlinear dispersion terms. These two terms can significantly reduce the speed
of the wave pulse and deform the profile of the wave into non symmetric shapes [42]. The
solution of the DNLS equation has been derived and discussed by several authors [43, 44, 45].

The equation (46) also contains two additional terms: | ˆ̃B
(1)

|2∂ ˆ̃B
(1)

/∂x and ∂ ˆ̃B
(1)

/∂x, in
comparison with the original DNLS equation [44, 45]. So, we call this equation as the
modified derivative nonlinear Schrodinger (mDNLS) equation. In the next section, we derive
exact solitonic solutions using the plane wave perturbation technique applied on the equation
(46) [41].

5 Solitary wave solution for the mDNLS equation

In order to derive localized solutions of the (mDNLS) equation, firstly we express ˆ̃B
(1)

(x, t)
in polar coordinate as following:

ˆ̃B
(1)

(x, t) = a(x, t)eiθ(x,t) (48)

where a(x, t) and θ(x, t) are real functions. Substituting (48) into (46) and separating real
and imaginary parts gives the following equations:

a
∂θ

∂t
+ C1

(
∂2a

∂x2
− a(

∂θ

∂x
)2
)
+ vAa

∂θ

∂x
+ (2− v2S)C2a

3 ∂θ

∂x
= 0

−∂a

∂t
+ C1

(
2
∂θ

∂x

∂a

∂x
+

∂2θ

∂x2

)
− vA

∂a

∂x
− (4− v2S)C2a

2 ∂a

∂x
= 0 (49)

The Stokes solution of the above equations is obtained as:

ˆ̃B
(1)

(x, t) = a0e
i[l0x−((2−v2

S)C2l0a
2
0−C1l

2
0+vA)t]. (50)
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that we use following expressions for parameters a and θ in (48):

a = a0 , θ = l0x− q0t (51)

where q0 = (2 − v2S)C2l0a
2
0 − C1l

2
0 + vAl0 in which a0 and l0 are real constants. In the

next step, we find a solution for the system of equations (49) by pretreating the nontrivial
solutions (50) as follows:

a(x, t) = a0 + α(x− vt = ϑ)

θ(x, t) = Ψ(ϑ)− (q0 − l0v)t (52)

where v is a constant parameter. Inserting (52) into (49) we get:

(vA − v)aΨ′ + C1

(
α′′ − a(Ψ′)2

)
+ (2− v2S)C2a

3Ψ′ + (l0v − q0)a = 0

(v − vA)α
′ + C1 (2α

′Ψ′ + aΨ′′)− (4− v2S)C2a
2α′ = 0 (53)

Multiplying the second equation of the set (53) by a and integrating the resulting equation
yields:

Ψ′ =
K1

C1a2
+

(4− v2S)C2

4C1
a2 − v − vA

2C1
(54)

where K1 is a constant of integration. Substituting the above equation into the first equation
(53) we obtain:

a′′ =
1

4C2
1

[
K1C2(6v

2
S − 16)− (v − vA)

2 − 4C1(l0v − q0)
]
a

+
C2

2C2
1

(2− v2S)(v − vA)a
3 +

K2
1

C2
1a

3
+

C2
2 (4− v2S)(12− 5v2S)

4C2
1

a5 (55)

and consequently:

a′
2
=

1

4C2
1

[
K1C2(6v

2
S − 16)− (v − vA)

2 − 4C1(l0v − q0)
]
a2 − K2

1

C2
1a

2

+
(2− v2S)C2

4C2
1

(v − vA)a
4 +

K2

4
+

C2
2 (4− v2S)(12− 5v2S)

12C2
1

a6 (56)

where K2 is a constant of integration. By setting a2 = χ, we obtain an elliptic ordinary
differential equation as following:

χ′2 =
−4K2

1

C2
1

+K2χ+Dχ2 + Eχ3 + Fχ4 (57)

where:

D =
2K1C2(3v

2
S − 8)− (v − vA)

2 − 4C1(l0v − q0)

C2
1

E =
(2− v2S)C2

C2
1

(v − vA) , F =
C2

2 (4− v2S)(12− 5v2S)

3C2
1

(58)

Now, we can examine the behaviour of solitary solutions for this equation by considering
fixed values for free parameters. When K1 = K2 = 0, the equation (57) becomes:

χ′2

χ2
= D + Eχ+ Fχ2 (59)
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In this case, if coefficients D ,E and F satisfy the following conditions:

D > 0 and E2 − 4DF > 0 (60)

the equation (57) embraces the following solitonic solution:

χ(ϑ) = χ±(ϑ) =
2D

−E ±
√
E2 − 4DF cosh

(√
Dϑ
) (61)

Since a2 = χ and x− vt = ϑ, from (48) we can write :

| ˆ̃B
(1)

(x, t) |2= 2D

−E ±
√
E2 − 4DF cosh

(√
D(x− vt)

) (62)

This equation clearly shows that the transverse magnetic field perturbation (and conse-
quently baryon density perturbation) propagates as stable solitary waves in cold QGP en-
vironment. The constraint D > 0 leads to the (v − vA)

2 + 4C1(l0v − q0) < 0, so that we
can determine the propagation velocity of solitary wave perturbation. It may be noted that
selecting the free parameters a0, l0 causes a convenient range for speed of localized wave that
is greater than the Alfven velocity.

The electric field perturbation can be obtained by using the Maxwell equation (3) as
following. we find that the direction of this perturbation is along the initial magnetic field
( x direction).

Ê(1)
x (x, y, z, t)2 = ± z2y2

y2 − z2

D3/2v
√
E2 − 4DF sinh

(√
D(x− vt)

)
(
−E ±

√
E2 − 4DF cosh(

√
D(x− vt))

)2 (63)

As an interesting result, existence of this electric field causes a separation between plasma
components according to their charges along the magnetic field. This means that we expect
to have an electric dipole moment in the core of dense and compact astrophysical objects.

6 Discussion

A comprehensive study on the features of mentioned perturbation waves can be carried
out here. The derived localized solution helps us to describe effects of different parameters
of the medium on the characteristics of solitary waves propagating in the medium, based
on the available information about the quark matter. Equations (62) indicate that the
wave phase speed, amplitude and the width of magnetic field perturbations are functions of
two important parameters ε0 (or mass density) and |B0|. For a given value of quark matter
information, we have chosen ρ0 = 3×1017kg/m3 ∼ 169MeV/fm3 and |B0| = 1010T [24, 46].
Also, we take the typically amount for µ0 = 4π×10−7H/m [47], mG = 600MeV , gh = 0.05
and ρB0 = 0.2fm−3 . Considering above mentioned values, we can obtain vA (from 29) ,
C1 ( by 43) , C2 (using 45) and consequently other parameters.

At first, we pay attention to the propagation velocity of solitary wave perturbation.
If the free parameters of the solution are taken as: a0 ∼ 1 and l0 ∼ −1, the constraint
(v − vA)

2 + 4C1(l0v − q0) < 0 determines a convenient range for the solitary wave speed,
which is definitely greater than the Alfven velocity. After selecting a specific value for
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Table 1: Alfven wave velocity and the range of solitary wave speed by considering different
value of background magnetic field |B0| atρ0 = 3.0× 1017(kg/m3).

B0(T ) Alfven wave velocity (m/s) The range of solitary wave velocity (m/s)
1.0× 109 1629.088 1767.906 − 1767.919
4.0× 1010 66792.609 72472.161 − 72469.714
6.0× 1010 99374.369 107815.369 − 107869.879
4.0× 1011 6.532× 105 7.076× 105 − 7.104× 105

6.0× 1011 9.791× 105 1.052× 106 − 1.061× 106

1.0× 1012 1.63× 106 1.763× 106 − 1.776× 106

Figure 1: Time evolution of the transverse magnetic field perturbation in a cold quark
matter with ρ0 = 3× 1017kg/m3 and |B0| = 4× 1011T .

the velocity within the range of allowed values, the width and amplitude of the localized
wave are calculated. Therefore, all properties of solitary wave are functions of background
mass density ρ0 and magnetic field |B0| as characteristic parameters of the quark matter
environment. Derived relations show that the Alfven velocity vA increases as the value of
|B0| increases. In the table 1, we write down the acceptable rang of solitary wave speed
by considering different value of background magnetic field |B0| which have been calculated
using the constraint D > 0. In our solutions, both Alfven wave speed (vA) and perturbation
wave velocity are greater than the sound wave speed and it is an acceptable result.

Figure 1 demonstrates the time evolution of transverse magnetic field perturbation which
propagates without any distortion in its initial direction. It is clear that such waves are able
to reach the border of the medium and create measurable effects at the boundaries. The
velocity of solitary wave has been taken as v = 7.08 × 105(m/s) by considering the Alfven
velocity vA = 6.53× 105(m/s).

As mentioned before, the width and the amplitude of this solitary wave are completely
dependent on the background mass density ρ0 and magnetic field |B0|. According to the
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Figure 2: Soliton profiles of the transverse magnetic field perturbation at t = 0 and t = 10−3

for different values of background magnetic field |B0| by considering ρ0 = 3× 1017kg/m3.

figure 2 with the same amount of mass density, the width of solitonic profiles decreases
but it propagates faster when the strength of magnetic field increases. Consequently, such
localized waves can be created in a specific range of magnetic field |B0|. This figure also
clearly indicates that the amplitude of the solitary wave is not significantly changed and it
is almost constant.

and finally, the effect of varying mass density is shown in figure 3. This figure indicates
that in spite of decreasing the wave phase speed, its width increases as the mass density is
given rise. Although, the width and the amplitude of the soliton is not very sensitive to the
changes of mass density.

7 Conclusions and remarks

In this work, we have focused on the magneto hydrodynamic equations in an ideal and non
relativistic framework for cold quark matter (QGP). Since the magnetic field oblige different
trajectories and consequently different velocity for each specific, the cold matter is consid-
ered as a multi-fluid environment which consist of three flavors of quarks (u, d, s) and we
could write a complete set of MHD equation with nonlinear and dispersive terms which play
essential roles in the dynamics of the system. Substituting an equation of state (EOS) in
MHD equations is necessary and the mQCD model is applied which gives a good description
of quark matter at the present of magnetic field. Because a perfect and analytical solution of
these equations is not feasible, the behavior of small amplitude perturbation of variables such
as densities, velocities and magnetic field have been investigated by applying the reductive
perturbation method (RPM). The result is the modified derivative nonlinear Schrodinger
(mDNLS) equation which governs the mass density (localized transverse magnetic field) per-
turbation waves. Also, Creating a transverse magnetic field perturbation induced an electric
field perturbation in the direction of initial magnetic field which can caused a separation of
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Figure 3: Soliton profiles of the transverse magnetic field perturbation at t = 0 and t = 10−3

for different values of background mass density ρ0 by considering |B0| = 1010T .

components according to their charges along the magnetic field.

These solitary waves can be propagated without any distortion in its initial direction in
cold quark matter. The width and the velocity of these localized waves are functions of the
background mass density and magnetic field. The solitonic wave phase speed increases as the
magnetic field B0 increases, while it decreases by increasing values of the mass density ρ0.
Also, increasing the magnetic field B0 reduces the width of solitary waves; but variation of
the mass density has not significant effects in the characteristics of solitary waves. Therefore,
we can conclude that the solitary profiles are expected to be established in such media when
the background magnetic field is in a specific range.

The significant result of this article is that, the small amplitude propagation of localized
waves in cold quark matter is not governed by the KdV equation and they are solitons of
the modified DNLS equation which behave very different from the KdV localized solutions.
Derived equations also clearly indicate that solitary waves in cold quark matter (by consid-
ering its electromagnetic effects) are completely stable, independent from the existence of
Laplacian terms in the energy density (which are generally weak).

Similar investigation can be done for neutron stars using other proper EOS like [48]. It
is expected that localized perturbation in magnetic field and energy density also appears
in this media. In other word, it is expected that presented behavior may be observed in
different structures of compact astrophysical objects.

So, there are many works in this subject which should be done (or revised). It is possible
that there exist some sorts of instabilities in the propagating waves as solutions of DNLS
equations, which should be investigated. Same problem but with different models for the
equation of state can be solved, and results should be compared. The problem also is open
for other forms of super dense media, like hadronic gas and nuclear matter as expected to
be found in compact astrophysical objects.
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