[1] P. Ade et al.: Planck 2015 results. XX. Constraints on inflation, arXiv:1502.02114 (2015).
[2] P. Ade et al.: A Joint Analysis of BICEP2/Keck Array and Planck Data, Phys. Rev. Lett. 114, 101301 (2015).
[3] P. Ade et al.: Planck 2013 results. XXII. Constraints on inflation, Astron. Astrophys. 571, A22 (2014).
[4] A. Albrecht and P. J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett. 48, 1220 (1982).
[5] L. Godinho and J. Natario: An introduction to riemannian geometry: With applications to Mechanics and Relativity, Springer, 2014.
[6] A. H. Guth, Inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D23, 347 (1981).
[7] S. Hawking: The occurrence of singularities in cosmology. III. Causality and singularities. Proc. Roy. Soc. Lon. 300, 187–201 (1967)
[8] S. Hawking, R. Penrose, : The singularities of gravitational collapse and cosmology. Proc. Roy. Soc. Lon. A. 314, 529–548 (1970)
[9] H. Wendland. Scattered Data Approximation. Cambridge University Press, New York, 2005.
[10] C. Zuppa. Good quality point sets and error estimates for moving least square approximations. Appl. Numer. Math., 47(3-4):575–585, 2003.
[11] K.E. Atkinson. The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge, 1997.
[12] W. Fang,Y. Wang andY. Xu. An implementation of fast wavelet Galerkin methods for integral equations of the second kind. J. Sci. Comput., 20(2):277–302, 2004.
[13]P. Assari, H. Adibi and M. Dehghan. A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis. J. Comput. Appl. Math., 239(1):72–92, 2013.
[14]P. Assari, H. Adibi and M. Dehghan. A numerical method for solving linear integral equations of the second kind on the non-rectangular domains based on the meshless method. Appl. Math. Model., 37(22):9269–9294, 2013.
[15]P. Assari, H. Adibi and M. Dehghan. A meshless discrete Galerkin (MDG) method for the numerical solution of integral equations with logarithmic kernels. J. Comput. Appl. Math., 267:160–181, 2014.
[16]P. Assari, H. Adibi and M. Dehghan. A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains. Numer. Algor., 67(2):423–455, 2014.
[17]P. Assari, H. Adibi and M. Dehghan. The numerical solution of weakly singular integral equations based on the meshless product integration (MPI) method with error analysis. Appl. Numer. Math., 81:76–93, 2014.
[18]P. Assari and M. Dehghan. A meshless method for the numerical solution of nonlinear weakly singular integral equations using radial basis functions. Eur. Phys. J. Plus., 132:1–23, 2017.
[19]P. Assari and M. Dehghan. The numerical solution of two-dimensional logarithmic integral equations on normal domains using radial basis functions with polynomial precision. Eng. Comput., 2017.
[20] A. Bejancu Jr. Local accuracy for radial basis function interpolation on finite uniform grids. J. Approx. Theory, 99(2):242–257, 1999.
[21] M. Dehghan and R. Salehi. The numerical solution of the non-linear integro-differential equations based on the meshless method. J. Comput. Appl. Math., 236(9):2367–2377, 2012.
[22] J. Duchon. Splines minimizing rotation-invariant semi-norms in Sobolev spaces, pp. 85–100. Springer Berlin Heidelberg, Berlin, Heidelberg, 1977.
[23] G. E. Fasshauer. Meshfree methods. In Handbook of Theoretical and Computational Nanotechnology. American Scientific Publishers, 2005.
[24] R. Franke. Scattered data interpolation: Tests of some methods. Math. Comput,
38(157):181–200, 1982.
[25] A. Golbabai and S. Seifollahi. Numerical solution of the second kind integral equations using radial basis function networks. Appl. Math. Comput., 174(2):877–883, 2006.
[26] H. Kaneko and Y. Xu. Gauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kind. Math. Comp., 62(206):739–753, 1994.
[27] E.J. Kansa. Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics-i surface approximations and partial derivative estimates. Comput. Math. Appl., 19(8-9):127–145, 1990.
[28] X. Li and J. Zhu. A Galerkin boundary node method and its convergence analysis. J. Comput. Appl. Math., 230(1):314–328, 2009.
[29] X. Li and J. Zhu. A Galerkin boundary node method for biharmonic problems. Eng. Anal. Bound. Elem., 33(6):858–865, 2009.
[30] X. Li and J. Zhu. A meshless Galerkin method for Stokes problems using boundary integral equations. Comput. Methods Appl. Mech. Engrg., 198:2874–2885, 2009.
[31] D. Mirzaei and M. Dehghan. A meshless based method for solution of integral equations. Appl. Numer. Math., 60(3):245–262, 2010.
[32] K. Parand and J. A. Rad. Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via collocation method based on radial basis functions. Appl. Math. Comput., 218(9):5292–5309, 2012.
[33] G. Wahba. Convergence rate of ”thin plate” smoothing splines when the data are noisy (preliminary report). Springer Lecture Notes in Math., 757, 1979.
[34] R.L. Hardy. Hardy, multiquadric equations of topography and other irregular surfaces. J. Geophys. Res., 176(8):1905–1915, 2006.
[35] D. Shepard, A two-dimensional interpolation function for irregularly spaced points, in: Proc. 23rd Nat. Conf. ACM, ACM Press, New York, 1968, pp. 517-524.
[36] P. Lancaster, K. Salkauskas, Surfaces generated by moving least squares methods, Math. Comput. 37 (1981) 141-158.