Soliton-like Solutions of the Complex Non-linear Klein-Gordon Systems in 1 + 1 Dimensions

Authors

1 Physics Department, Persian Gulf University, Bushehr 75169, Iran.

2 Jahrom University, Jahrom 74135-111, Iran

Abstract

In this paper, we present soliton-like solutions of the non-linear complex Klein-Gordon systems in 1+1 dimensions. We will use polar representation to introduce three different soliton-like solutions including, complex kinks (anti-kinks), radiative profiles, and localized wave-packets. Complex kinks (anti-kinks) are topological objects with zero electrical charges. Radiative profiles are objects that move at the speed of light and therefore, have a zero rest mass. They can be created in kink-anti-kink collisions and vice versa. Localized wave packet solutions are non-topological objects for which wave and particle behavior are reconciled in a classical way. For localized wave packet solutions, the trivial initial phase imposes an uncertainty on the collision fates.

Keywords


[1] R. Rajaraman, Solitons and Instantons (North Holland, Elsevier, Amsterdam, 1982).
[2] A. Das, Integrable Models (World Scienti_c, 1989).
[3] G. L. Lamb, Jr., Elements of Soliton Theory (John Wiley and Sons, USA, 1980).
[4] P. G. Drazin and R. S. Johnson, Solitons: an Introduction (Cambridge University Press, 1989).
[5] D. K. Campbell and M. Peyrard, Phys. D 19, 165 (1986).
[6] D. K. Campbell and M. Peyrard, Phys. D 18, 47 (1986).
[7] D. K. Campbell, J. S. Schonfeld, and C. A. Wingate, Physica D 9, 1 (1983).
[8] M. Peyrard and D. K. Campbell (1983), Physica D 9, 33 (1983).
[9] R. H. Goodman and R. Haberman, Siam J. Appl. Dyn. Syst. 4, 1195 (2005).
[10] M. Mohammadi and N. Riazi, Prog. Theor. Phys 126, 237 (2011).
[11] S. Hoseinmardi and N. Riazi, Int. J. Mod. Phys. A 25, 3261 (2010).
[12] V. A. Gani and A. E. Kudryavtsev, Phys. Rev. E 60, 3305 (1999).
[13] C. A. Popov, Wave Motion 42, 309 (2006).
[14] M. Peyravi, A. Montakhab, N. Riazi, and A. Gharaati, Eur. Phys. J. B 72, 269 (2009).
[15] T.D. Lee and G.C. Wick, Phys. Rev. D9 2291 (1974).
[16] R. Friedberg, T. D. Lee and A. Sirlin Phys. 13, 2739 (1976).
[17] R. Friedberg and T.D. Lee, Phys. Rev. D15 1694 (1977)
[18] J. Werle. Physics Letters. 71B, 368 (1977).
[19] Werle, J.: Acta Phys. Pol. B12, 601 (1981).
[20] S. Coleman, Nucl. Phys. B 262(2) 263-283 (1985).
[21] T.D. Lee and Y. Pang, Phys. Rep. 221(5) 251-350 (1992).
[22] N. Riazi, Int. J. Theor. Phys.50, 3451 (2011).
[23] R. Abazari and S. Jamshidzadeh, Optik vol.126 1970-1975 (2015).
[24] M. Mohammadi, N. Riazi, Prog. Theor. Exp. Phys, 023A03 (2014).