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Abstract. In this paper, we present soliton-like solutions of the non-linear complex
Klein-Gordon systems in 1+1 dimensions. We will use polar representation to introduce
three different soliton-like solutions including, complex kinks (anti-kinks), radiative-
profiles, and localized wave-packets. Complex kinks (anti-kinks) are topological objects
with zero electrical charges. Radiative profiles are objects that move at the speed of
light and therefore, have a zero rest mass. They can be created in kink-anti-kink
collisions and vice versa. Localized wave packet solutions are non-topological objects
for which wave and particle behavior are reconciled in a classical way. For localized
wave packet solutions, the trivial initial phase imposes an uncertainty on the collision
fates.
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1 Introduction

Nonlinear real Klein-Gordon (KG) systems in 1 + 1 dimensions with topological kink (anti-
kink) solutions have been suited for decades. The most well-known system in this area is
the integrable sine-Gordon (SG) system [1, 2, 3, 4]. There are many other systems with
kink solutions but are not as famous as the SG system [1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].
In spite of wide studies in the real non-linear Klein-Gordon systems with soliton-like kink
(anti-kink) solutions, the complex versions were to some extent out of interest [15, 16, 17,
18, 19, 20, 21, 22, 23, 24]. An attempt in this line was the introduction of the complex kink
(anti-kink) and radiative profiles, specially for the complex SG system [24].

In general, complex KG systems (Lagrangian densities) are ones which composed of
complex fields. In other words, they are just special versions of the KG systems which are
functional of scalar fields (φ) and their complex conjugates (φ∗). For complex KG systems,
it is easy to show that the conservation of electrical charge is satisfied generally. In fact, it
essentially originates from the U(1) symmetry of such systems. For a real KG system with
real scalar fields ϕ and standard kinetic terms ∂µϕ∂

µϕ, one can easily change it to a complex
version via the following transformations: ϕ −→ |φ| = R =

√
φφ∗ and ∂µϕ∂

µϕ −→ ∂µφ∂
µφ∗.

In this paper, with a straightforward mathematical calculation, all soliton-like solutions
of the complex non-linear Klein-Gordon systems (CNKG) in 1+1 dimensions will be studied
generally. Complex kinks (anti-kinks), radiative profiles and localized wave-packets are three
types of soliton-like solutions which will be considered in details for all CNKG systems. For
such systems, two kinds of conserved charge, topological and electrical, can be defined.
All complex kink (anti-kink) solutions have the same rest mass and zero electrical charge
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but non-zero topological charge. Radiative profiles, as is obvious from their name, travel
with the speed of light and have zero rest mass. Regarding radiative profiles, there is a
countless variety. They can be topological or non-topological, have zero electric charge or
non-zero one. Radiative profiles are created in collision between kinks and anti-kinks, and
this process could be happening in the opposite direction; that means in the collision between
two radiative profiles, kink-anti-kink pairs can be created.

Localized wave packet solutions, unlike the ordinary (linear) KG equations, do not dis-
perse and they do satisfy a relation similar to the de Broglies wavelength-momentum relation.
Two apparently contradictory aspects of quantum behavior, i.e. wave and particle behavior,
are reconciled in a classical way for such soliton-like solutions. There are a continuous range
of localized wave packet solutions which can be identified by different rest frequencies ωo.
Some of them are not stable and they decompose into a pair of separate kink and anti-
kink. It will be shown that there is an uncertainty in the collision processes which is related
to trivial initial phases. For different initial phases, particle aspect of the localized wave
packets solutions remains unchanged, while the final behaviour in collision processes may
be drastically affected. All soliton-like solutions were shown to obey the famous energy-rest
mass-momentum relation of the special relativity.

We expect all CNKG systems to have similar features. Therefore, the complex φ4 system
as a special example of the CNKG systems in 1+1 dimensions will be employed. Fortunately,
we will find well-known analytical functions for its complex kink (anti-kink) and localized
wave-packet solutions. All numerical results in this paper will be prepared just for the
complex φ4 system. In fact, this paper is the complementary of the pervious paper [24]
which was specially about radiative profiles and complex kinks (anti-kinks) of the complex
SG system.

The organization of this paper is as follows: In the next section, we will introduce basic
equations for non-linear complex KG systems in two different but equivalent representations.
Sections 3, 4 and 5 contain a full discussion about complex kinks (anti-kink), radiative
profiles and localized wave-packet solutions respectively. Section 6, contains a numerical
study about complex kink-anti-kink collisions. In section 7, a numerical study will be prepare
for the stability and uncertainty in collisions for the wave packet solutions. The last section
devoted to the summary and conclusions.

2 Basic equations

In this paper, we use two different representations to introduce complex non-linear KG
systems and related details in 1 + 1 dimensions. Each of them can shed light on different
aspect of the systems, but they are equivalent.

2.1 formal representation

Based on what is done in Refs. [1, 15, 16, 17, 18, 19, 20, 21, 22, 23], the non-linear complex
Klein-Gordon systems can be generally introduced by the Lagrangian density as

L = ∂µφ
∗∂µφ− V (|φ|), (1)

where φ is a complex scalar field and V (R) represents a self-interacting potential that de-
pends only on the magnitude or module of φ (R = |φ|). Using the least action principle, the
dynamical equation for the evolution of φ can be obtained as follows:

�φ =
1

c2
∂2φ

∂t2
− ∂2φ

∂x2
= − ∂V

∂φ∗
= −1

2
V ′(|φ|) φ

|φ|
. (2)
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The energy-momentum tensor corresponding to the Lagrangian density (1) can be calculated
using the Noethers theorem:

Tµν = 2∂µφ∗2∂νφ− gµνL, (3)

where gµν is the Minkowski metric tensor. Also, the related energy density has the following
form:

T 00 = ε(x, t) =
1

c2
φ̇φ̇∗ + φ́φ́∗ + V (|φ|) (4)

where the primes and dots denote space and time derivatives respectively.
Simply, it can be shown that the conservation relation is valid for two four-vector currents;

the electrical current
jµ = iη(φ∗∂µφ− φ∂µφ∗), (5)

and topological current
Jµ = Cεµν∂νφ. (6)

Here εµν is an anti-symmetric tensor, C and η are just constant numbers. Corresponding to
each of these currents, it can be easily shown that

q =

∫ +∞

−∞
j0dx =

∫ +∞

−∞
iη(φ∗φ̇− φφ̇∗)dx, (7)

and

Q =

∫ +∞

−∞
J0dx = C[φ(+∞)− φ(−∞)], (8)

that we call them electrical and topological charges respectively, which are constants of
motion.

2.2 polar representation

Following the line of Refs. [1, 15, 16, 17, 18, 19, 20, 21], we can change variables φ and φ∗

to polar fields R(x, t) and θ(x, t) as defined by

φ(x, t) = R(x, t) exp[iθ(x, t)]. (9)

In terms of polar fields, the Lagrangian-density and field equations transform respectively
to

L = (∂µR∂µR) +R2(∂µθ∂µθ)− V (R), (10)

and

�R−R(∂µθ∂µθ) = −1

2

dV

dR
, (11)

∂µ(R2∂µθ) = 2R(∂µR∂
µθ) +R2(∂µ∂µθ) = 0. (12)

The related Hamiltonian (energy) density is obtained via the Noether’s theorem:

ε(x, t) =
1

c2
Ṙ2 + Ŕ2 +R2(

1

c2
θ̇2 + θ́2) + V (R). (13)

The corresponding electrical current is

jµ = −2η(R2∂µθ), (14)

which according to field equation (12) is the conserved current.
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3 Complex Kink (Anti-kink) solutions

If the phase function θ(x, t) is a constant, then equation (12) will be satisfied automatically
and equation (11) is reduced to

�R = −1

2

dV

dR
, (15)

which is the same as real non-linear Klein-Gordon equation with well-known kink and anti-
kink solutions. If R = ϕo(x) is the static kink (anti-kink) solution of the equation (15),
then a moving complex kink (anti-kink) solution with velocity v would be introduced in the
following form:

φ(x, t) = ϕv(x, t)e
iθ = ϕo(±γ(x− vt− xo))eiθ. (16)

in which γ = 1/
√

c2 , and xo is the initial position of the center of the kink (anti-kink).1− v2

Generally, to have kink and anti-kink solutions, field potential V (R) must have at least two
successive non-negative vacuum points. For complex kinks and anti-kinks solutions (16), in
general, it can be shown that the electrical charge (7) is always zero and the topological
charge (8) will take the following final form:

Q = Ceiθ[ϕv(+∞)− ϕv(−∞)], (17)

Moreover, using the energy-momentum tensor (3), it can be shown simply that in general,
these solutions satisfy the relativistic energy-momentum relations as we expect for a real
particle:

Ev = γEo =

∫ +∞

−∞
[

1

c2
Ṙ2 + Ŕ2 + V (R)]dx, (18)

p =

∫ +∞

−∞
T 01dx =

∫ +∞

−∞
[

1

c2
φ̇φ́]dx = γmov, (19)

where Eo = moc
2 is the rest energy of kinks (anti-kinks).

A real KG system with kink (anti-kink) solutions is the famous ϕ4 system which is
identified by the following Lagrangian density:

L = ∂µϕ∂
µϕ− (ϕ2 − 1)2. (20)

Its standard kink (anti-kink) solution is

ϕ(x, t) = tanh(±γ(x− vt− xo)), (21)

which varies between −1 and 1 (i.e. the successive vacuum points which are zeros of the
potential U(ϕ) = (ϕ2−1)2). There are many works which studied the collisions and internal
structures of the real ϕ4 system [1, 5, 6, 7, 8, 9]. In this paper, we use this famous real KG
system (20) to build the complex version of that. Therefore, the complex φ4 system, as an
example of the CNKG systems, can be introduced as follows:

L = ∂µφ∂
µφ∗ − [(R− 1)2 − 1]2. (22)

Note that, the module function R must be always positive. Therefore, according to Eq. (15),
to have a kink (anti-kink) solution, since a kink (anti-kink) solution varies from one vacuum
point to another one, we must use a modified version of the potential (instead of U(R) =
(R2 − 1)2) in such a way that R = 0, 2 ≥ 0 being vacuum points, i.e.

V (R) = [(R− 1)2 − 1]2. (23)
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For this complex field system (22), the corresponding complex kink and anti-kink solutions
are

φ(x, t) = [tanh(±γ(x− vt− xo)) + 1] eiθ. (24)

The related topological charge, if we choose C = 1, is

Q = ±2eiθ, (25)

in which + (−) is for kinks (anti-kinks). In the next sections, specially as an example of the
CNKG systems, we use the complex φ4 system to introduce the other soliton-like solutions
and study the fates of them in different collisions.

4 Radiative-profile solutions

If Rj is a vacuum point, i.e. V (Rj) = 0 and dV
dR (Rj) = 0, it is easy to see that equations

(11) and (12) are satisfied for infinite soliton-like solutions which move at speed of light:

R(x, t) = Rj , θ(x, t) = f(x± ct), (26)

where f is an arbitrary function. The related energy density (13) is now reduced to

ε(x, t) = 2R2
j

(
df

dx̃

)2

, (27)

in which x̃ = x ± ct. If for an arbitrary function f(x̃), the corresponding energy density
ε(x, t) is localized, we have a “radiative-profile”, i.e. a packet of energy which moves at
the speed of light. Moreover, it can be proved generally that for such solutions (similar to
massless particles), the relation between total energy and momentum is given by

p =
±1

c

∫ +∞

−∞
2R2

i

(
df

dx̃

)2

= ±E
c
, (28)

Equivalently, we can use formal representation to introduce radiative profiles:

φ(x, t) = Rje
if(x±ct) = φr(x± ct) + iφi(x± ct), (29)

provided

Rj =
√
φ2r + φ2i . (30)

Namely, for φ4 system (23), to have a radiative profile, if we consider the form of the real
part of the field as

φr(x, t) = Ae−(x±ct)
2

, (31)

we should consider the imaginary part as the following form:

φi(x, t) =
√

4−A2e−2(x±ct)2 , (32)

provided that |A| < 2. It can be simply conclude that this arbitrary constructed solution
(relations (31) and (32)) is a non-topological object with zero topological charge. In general,
for any arbitrary solution, depending on functions φi and φr to be non-topological (topo-
logical) objects, the related topological charge is zero (non-zero). Moreover, for radiative
profiles, depending on functions φr and φi to be even or odd, the related electrical charges
would be zero.
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5 wave-packet solutions

It is easy to check that some solutions in the following form:

R(x, t) = R(γ(x− vt)), θ(x, t) = kµx
µ + θo = ωt− kx+ θo, (33)

satisfy equations (11) and (12), provided

k =
ωv

c2
, (34)

and θo (initial phase) is just a constant. In general, kµ ≡ (ω, k) is defined as a 1 + 1 vector,
then ∂µθ∂µθ = kµk

µ = ω2
o/c

2 is a constant scalar. Related to different values of ωo, there
are different wave equations for R (11):

�R = −d
2φ

dx2
= −1

2

dV

dR
+
ω2
o

c2
R, (35)

where
x = γ(x− vt). (36)

If we multiply (35) by dR
dx and integrate, it yields to(

dR(x)

dx

)2

+
ω2
o

c2
R2 = V (R) + C ′, (37)

where C ′ is an integration constant. This constant is expected to vanish for a localized
wave-packet. This equation can be easily solved for R, once the potential V (R) is known:

x− xo = ±
∫ R

Ro

dR√
V (R)− ω2

o

c2 R
2

. (38)

In general, related to different values of ωo, there are different non-topological solutions for
R(x) . Exactly like complex kink energy-momentum relations (18) and (19), there are the
same relations for wave-packet solutions:

Ev = γEo = γ

∫ +∞

−∞
´[R2 +R2ω

2
o

c2
+ V (R)]dx, (39)

p =
1

c2

∫ +∞

−∞
[φ̇∗φ́+ φ̇φ́∗]dx = γmov, (40)

where Eo = moc
2 is the rest energy of the wave-packet solution and is a function of ωo.

Moreover, one can use equation (34) to obtain

ω = γωo. (41)

Therefore, equations (39) and (41) show that frequency and energy have the same behavior
and we can relate them via introducing a Planck-like constant h:

E = hω. (42)

It is easy to understand that h is a function of rest frequency ωo and for different wave-packet
solutions, there are different h constants. Similarity, it is possible to find a relation between
relativistic momentum of a soliton solution and wave number k:

p = hk. (43)
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This equation is very interesting since it resembles the deBroglie’s relation. Note that all
Eqs. (34)-(43) were introduced similarly in Ref [22].

If we consider φ4 system (23), the integral (38) can be easily performed, yielding the
following solutions for 0 < wo < 4:

R(x) =
(4− ω2

o/c
2)

2 + ωo cosh(
√

4− ω2
o/c

2 x)
. (44)

Accordingly, there are infinite localized soliton-like wave-packet solutions which can be iden-
tified with different rest frequencies (ωo). There are the similar works about the localized
wave-packet solutions in the Refs. [22, 23].

6 Kink-anti-kink collisions in complex φ4 system

In general, by preparing the suitable initial condition, we can study kink-anti-kink collisions
numerically. For example, when an in-phase kink-anti-kink pair collides, i.e. θ1 = θ2, it
treats exactly like what happened for the known real φ4 system. An out-of-phase kink-anti-
kink pair, i.e. θ1 6= θ2, leads to the formation of a pair of radiative profiles in a desired
stable localized form after collision (see Figs. 1). If in a kink-anti-kink collision, the phase

difference (θ2−θ1) is equal to
π

2
, they always annihilate each other into two radiative profiles

(Fig. 2).

Figure 1: A complex kink (θ1 = arctan(
√

2)) collides with a complex anti-kink (θ2 = π
2 ) with

initial kink (anti-kink) speed equals to 0.5c. For a kink, contrary to an anti-kink, module
function change from zero to 2. For radiative profiles, R is always constant (R = 2), hence
it is not possible to track a radiative profile via the module representation.

Thus, we guess that the reversed process in collision between two radiative profiles would
be possible. In other words, we expect we would be able to prepare a condition to create some
kink-anti-kink pairs from the collisions of two radiative profiles. Theoretically, the discussion
about this matter appears to be very difficult, but with the help of numerical simulations,
we can see that in the case of the collision of two energetic radiative profiles, the creation
of kink-anti-kink pairs with non-zero rest mass is possible. Although radiative profiles look
like ordinary solutions of a linear wave equation, the inherent non-linearity in the original
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Figure 2: A complex kink (θ1) collides with a complex anti-kink (θ2 = θ1 + π
2 ) with initial

kink (anti-kink) speed of 0.5c.

Figure 3: When two radiative profiles collide with each other, pairs of kink-anti-kinks can
be created after collision.

field equation causes major differences. Namely, if a pair of similar radiative-profiles which
are introduced by

φr(x± ct) =
2(x± ct)6

100 + (x± ct)6
, φi =

√
4− φ2r, (45)

collide with each other, two pairs of kink-anti-kink are created after collision (Fig. 3). It
is completely evident that in all of these collisions electrical and topological charges are
conserved. There are similar numerical results in the reference [24] which were obtained for
the complex SG system.
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7 The stability consideration and uncertainty in colli-
sions for the localized wave packet solutions

As we said before, the total rest energy Eo for different localized wave packet solutions
is a function of ωo. For complex φ4 system, the related curve of total rest energy versus
ω2
o/c

2 is shown in Fig. 4. The maximum of this curve occurs almost about ω2
o/c

2 = 0.34.
Numerically, it was shown that for solutions which ω2

o/c
2 < 0.34, the wave packet solutions

are completely unstable i.e. any small perturbation would change it to a pair of separate
kink and anti-kink solutions (see Fig. 5). Moreover, for wave packet solutions which ω2

o/c
2

is more close to 4, the more stability observed numerically.

Figure 4: The total rest energy Eo versus ω2
o/c

2 for different localized wave packet solutions
of the complex φ4 system.

Figure 5: For a localized wave packet solution with ω2
o/c

2 = 0.34, any small perturbation
changes it to a pair of separate kink and anti-kink.

One might think that optional initial phase θo for a localized wave packet solution is an
unimportant parameter (33). In fact, it has no role in determining basic physical features
of a single soliton such as energy, momentum and charge. But, it was seen numerically
during the collision between localized wave packet solutions, these initial phases become
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very important. Namely, for two identical localized wave packet solutions with ω2
o/c

2 = 0.7
and initial speed v = 0.5c, if the initial phase difference is equal to π i.e. θ20− θ10 = π, they
are scattered from each other and reappear after collision. But if the initial phase difference
is equal to 0, two pairs of kink-anti-kink would appear after collision (Fig. 6). Therefore,
there is an apparent uncertainty in the collision processes which originates from the initial
phases.

Figure 6: Two identical localized wave packet solutions with ω2
o/c

2 = 0.7 collide with each
other. The initial speeds are 0.5c. For the left (right) figure, the initial phase difference is π
(0).

Figure 7: The module representation of Fig. 6. For a kink module function change from
zero to 2 contrary to an anti-kink
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8 Summery and conclusion

After reviewing some basic properties of the complex non-linear Klein-Gordon (CNKG)
equations in two equivalent formal and polar representations, it was shown in general that
for the CNKG equations in 1+1 dimensions, there are three different soliton-like solutions:
complex kinks (anti-kinks), radiative profiles and localized wave-packets. Complex kinks
(anti-kinks) are topological soliton-like solutions with zero electrical charge and the same
rest mass. Radiative profiles are localized objects with zero rest mass and move at the
speed of light. They can be topological or not, and the related charge may be zero or not.
Localized wave-packet solutions are a Continuous range of the soliton-like solutions which
can be identified by different rest frequencies (ωo). Two apparently contradictory aspects of
quantum behavior, i.e. wave and particle behavior, were reconciled in a classical way for such
soliton-like solutions. All soliton-like solutions were shown to obey the famous energy-rest
mass-momentum relation of the special relativity.

In the whole paper, complex φ4 system as a special example of the non-linear complex
KG systems in 1+1 dimensions was employed for better consideration of all of the soliton-
like solutions. Kink-anti-kink collisions for the complex φ4 system are studied numerically.
It was seen that radiative-profiles always appear in out-of-phase kink-anti-kink collisions. In
the reversed way, kink-anti-kink pairs can be created in collisions between radiative profiles.
It was seen numerically that some of the localized wave packet solutions are completely
unstable and decompose into a pair of separate kink-anti-kink solution. Moreover, we found
numerically that there is an uncertainty in collision fates between localized wave packet
solutions. This uncertainty originates from the initial phases. For different initial phases,
particle aspect of the localized wave packets solutions remains unchanged, while the final
behaviour may be drastically affected.
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