he Lyman Alpha forest is one of the most powerful cosmological tools for studying large-scale structures of the universe. The flux autocorrelation function for Lyman alpha forest is used to study the clustering of structures. This paper, uses the Lyman alpha forest of 49 high-resolution, high signal-to-noise (S/N>20) QSO spectra observed with VLT/UVES. The studied quasars have emission redshifts in the range of ( 1.89< zem < 3.80). The flux autocorrelation function is calculated for each sample, and then, the effect of metal absorption lines in the Lyman alpha forest on the flux autocorrelation function is investigated. The results of the present study show that the effect of removing metal absorption lines is more visible in the transition to lower redshifts, where there are relatively fewer Lyman alpha absorption lines. Moreover, the change in the flux autocorrelation function at different redshifts is investigated. The results indicate that the flux autocorrelation function at higher redshifts has a larger average value than that at lower redshifts.
[1] Nicolson, I. 1999, Unfolding our univer, Cambridge univ. press, Cambridge. [2] Gunn, J. E. & Peterson B. A. 1965, ApJ, 142, 1633. [3] Bahcall, J. N. & Salpeter, E. E. 1965, ApJ, 142, 1677. [4] Lynds, R. 1971, ApJ, 164, 73. [5] Cen, R., Miralda-Escude′, J., & Ostriker, J. P. 1994, ApJ, 437, 9. [6] Zhang, Y., Anninos, P., & Norman, M. L. 1995, ApJ, 453, 57. [7] Hernquist, L., Katz, N., Weinberg, D. H., Jordi, M. 1996, ApJ, 457, 51. [8] Theuns, T., Leonard, A., Efstathiou, G., Pearce, F. R., & Thomas, P. A. 1998, MNRAS, 301, 478. [9] Mo, H. 2010, Galaxy formation and evolution, Cambridge Univ. Press, cambridge. [10] Miralda-Escud′e, J., Cen, R., Ostriker, J. P., & Rauch, M. 1996, ApJ, 471, 582. [11] Wadsley, J. W. & Bond, J. R. 1997, in Astronomical Society of the Pacific Conference Series, Vol. 123, Computational Astrophysics; 12th Kingston Meeting on Theoretical Astrophysics, ed. D. A. Clarke , M. J. West, 332. [12] Zhang, Y., Anninos, P., Norman, M. L., Meiksin, A. 1997, ApJ, 485, 496. [13] Hui, L., Gnedin, N. Y. 1997, MNRAS, 292. [14] Puchwein, E., Bolton, J. S., Haehnelt, M. G., et al. 2015, MNRAS, 450, 4081. [15] McQuinn, M., Upton Sanderbeck, P. R. 2016, MNRAS, 456, 47. [16] Slosar, A., Font-Ribera, A., Pieri, M.M., Rich, J., Goff, M. L., Aubourg, E. et al. 2011, JCAP, 001. [17] McDonald, P. 2003, ApJ, 585, 34. [18] Givans, J. J., Font-Ribera, A., Slosar, A., & Seeyave, L. 2022, JCAP, 070. [19] Rauch, M., Miralda-Escude′, J., Sargent, W. L. W., Barlow, T. A., et al. 1997, ApJ, 489, 7. [20] Zuo, L. 1992, MNRAS, 258, 36. [21] Zuo, L. & Bond, J. R. 1994, ApJ, 423, 73. [22] Hui, L. 1999, ApJ, 516, 519. [23] Cen, R., Phelps, S., Miralda-Escude′, J., & Ostriker, J. P. 1998, ApJ, 496, 577. [24] Croft, R. A. C., Weinberg, D. H., Katz, N., & Hernquist, L. 1998, ApJ, 495, 44. [25] McDonald, P., Miralda-Escud′e, J., Rauch, M., Sargent, W. L. W., Barlow, T. A., R. Cen, R., et al. 2000, AJ, 543. [26] McDonald, P., Seljak, U., Burles, S., Schlegel, D. J., Weinberg, D. H., Cen, R. et al. 2006, ApJS, 163. [27] Palanque-Delabrouille, N., Y‘eche, C., Borde, A., Goff, J.-M.L., Rossi, G., Viel, M., et al. 2013, A&A, 559, A85. [28] Chabanier, S., Palanque-Delabrouille, N., Y‘eche, C., Goff, J.-M.L., Armengaud, E., Bautista, J., et al. 2019, JCAP,017. [29] European Southern Observatory (ESO), http://www.eso.org/public. [30] Ballester, P., Modigliani, A., Boitquin, O., Cristiani, S., Hanuschik, R., Kaufer,A., & Wolf, S. 2000, in The Messenger, 101, 31. [31] Bechtold, J. 1994, ApJS, 91, 1. [32] Srianand, R. & Khare, P. 1996, MNRAS, 280, 767. [33] Liske, J. & Williger, G. M. 2001, MNRAS, 328, 653. [34] Prochaska, J. X., Hennawi, J. F., Lee, K.-G., et al. 2013, ApJ, 776, 136. [35] Khrykin, I. S., Hennawi, J. F., McQuinn, M., & Worseck, G. 2016, ApJ, 824, 133. [36] Priyanka, J., Hum, Ch., & Srianand, R. 2019, APJ, 884, 151. [37] Walther, M., Hennawi, J., Hiss, H., O′norbe, J., Lee, Kh. G., Rorai, A., & O’Meara, J. 2018, APJ, 852 ,22. [38] Aghaee, A., Petitjean P., Srianand, R., Stalin, C. S., & Guimar′aes, R., 2010, J. Astrophys. Astron., 31, 59. [39] Calura, F., Tescari, E., D’Odorico, V., Viel, M., Cristiani, S., & Kim, T.-S., Bolton J.S., 2012, MNRAS,422, 3019. [40] Croft, R. A., Weinberg, D. H., Pettini, M., Hernquist, L., & Katz,N. 1999, ApJ, 520, 1. [41] Andrew, R. M., Kristoffer, A. E., Chris, D. I., & Lei, B. 2008, ApJS, 175, 29. [42] Cen, R. & Ostriker, j. P. 1999, ApJ, 514 ,1. [43] Becker, G.D. & Rauch, M. 2004, ApJ, 613, 61.
Rezaee Darestanee, S., Pazhouhesh, R., & Aghaee, A. (2025). The Study of Auto-Correlation Function on Lyman Alpha Forest of QSOs. Iranian Journal of Astronomy and Astrophysics, 11(3), 231-243. doi: 10.22128/ijaa.2025.814.1181
MLA
Sara Rezaee Darestanee; Reza Pazhouhesh; Alireza Aghaee. "The Study of Auto-Correlation Function on Lyman Alpha Forest of QSOs", Iranian Journal of Astronomy and Astrophysics, 11, 3, 2025, 231-243. doi: 10.22128/ijaa.2025.814.1181
HARVARD
Rezaee Darestanee, S., Pazhouhesh, R., Aghaee, A. (2025). 'The Study of Auto-Correlation Function on Lyman Alpha Forest of QSOs', Iranian Journal of Astronomy and Astrophysics, 11(3), pp. 231-243. doi: 10.22128/ijaa.2025.814.1181
VANCOUVER
Rezaee Darestanee, S., Pazhouhesh, R., Aghaee, A. The Study of Auto-Correlation Function on Lyman Alpha Forest of QSOs. Iranian Journal of Astronomy and Astrophysics, 2025; 11(3): 231-243. doi: 10.22128/ijaa.2025.814.1181