Complex Network in Solar Features

Document Type : Review Paper

Author

Department of Theoretical Physics and Astrophysics, Faculty of Physics, University of Tabriz, P.O.Box 51666--16471, Tabriz, Iran

Abstract

This paper is an overview of studying the solar features in a complex network approach. First, we introduce the structural features of complex networks and important network parameters. Applying the detrended fluctuation and rescaled range analysis and nodes degree power-law distributions confirmed the non-randomness of the solar features complex networks.
Using the HEALPix pixelization and considering all parts of the solar surface under the same conditions, as well as applying centrality parameters (the nodes with the highest connectivity, closeness, betweenness, and Pagerank) showed that the active areas on the solar surface were correctly identified and were consistent with observations.
A review of the complex structure of the solar proton flux and active regions also showed that in these networks, the average clustering coefficient and Page-rank parameters are suitable criteria to use in event prediction methods. The complex network of sunspots has also shown that sunspots and sunspot groups are formed through complex nonlinear dynamics.

Keywords


 [1] Beer, J., Mende, W., & Stellmacher, R. 2000, Quaternary Science Reviews, 19, 403.
[2] Echer, E., et al. 2005, Advances in Space Research, 35, 855.
[3] Pulkkinen, T. 2007, Living Reviews in Sol. Phys., 4, 1.
[4] Schrijver, C. J., et al. 2015, Advances in Space Research, 55, 2745.
[5] Cane, H. V., Erickson, W., & Prestage, N. 2002, J. Geophysical Research: Space Physics, 107, SSH.
[6] Tajfirouze, E., & Safari, H. 2011, ApJ, 744, 113.
[7] Alipour, N., & Safari, H. 2015, ApJ, 807, 175.
[8] Honarbakhsh, L., Alipour, N., & Safari, H. 2016, Sol. Phys., 291, 941.
[9] Raboonik, A., Safari, H., Alipour, N., & Wheatland, M. S. 2016, ApJ, 834, 11.
[10] Chen, J. 2017, Physics of Plasmas, 24.
[11] Filippov, B. P. 2019, Physics-Uspekhi, 62, 847.
[12] Muhamad, J., Kusano, K., Inoue, S., & Shiota, D. 2017, ApJ, 842, 86.
[13] Alipour, N., Mohammadi, F., & Safari, H. 2019, ApJS, 243, 20.
[14] Schüssler, M., & Cameron, R. H. 2018, A&A, 618, A89.
[15] Russell, C., Jian, L., & Luhmann, J. G. 2019, Reviews of Geophysics, 57, 1129.
[16] Albert, R., & Barabási, A.-L. 2002, Reviews of modern physics, 74, 47.
[17] Amaral, I. 2022, Encyclopedia of Big Data (Springer), 198–201.
[18] Edelman, M., Macau, E. E., & Sanjuan, M. A. 2018, Chaotic, fractional, and complex dynamics: new insights and perspectives, Springer.
[19] Rezaei, S., Darooneh, A. H., Lotfi, N., & Asaadi, N. 2017, Physica A: Statistical Mechanics and its Applications, 471, 80.
[20] Strogatz, S. H. 2001, Nature, 410, 268.
[21] Van Steen, M. 2010, An introduction, 144, 1.
[22] Estrada, E. 2012, The structure of complex networks: theory and applications, American Chemical Society.
[23] Barabási, A.-L., & Albert, R. 1999, Science, 286, 509.
[24] Myers, C. R. 2003, Phys. Rev. E, 68, 046116.
[25] Floyd, R. W. 1962, Communications of the ACM, 5, 345.
[26] Fronczak, A., Fronczak, P., & Hołyst, J. A. 2004, Phys. Rev. E, 70, 056110.
[27] Boccaletti, S., et al. 2006, Phys. Rep., 424, 175.
[28] Gheibi, A., Safari, H., & Javaherian, M. 2017, ApJ, 847, 115.
[29] Mandelbrot, B. B. 1975, Proceedings of the National Academy of Sciences, 72, 3825.
[30] Abe, S., & Suzuki, N. 2006, Nonlinear Processes in Geophysics, 13, 145.
[31] Dorogovtsev, S. N., & Mendes, J. F. 2001, Phys. Rev. E, 63, 056125.
[32] Wu, F. J. 2013, Advanced Materials Research, 622, 1933.
[33] Aschwanden, M. J. 2015, ApJ, 814, 19.
[34] Cohen, R., Havlin, S., & Ben-Avraham, D. 2003, Phys. Rev. Lett., 91, 247901.
[35] Najafi, A., Darooneh, A. H., Gheibi, A., & Farhang, N. 2020, ApJ, 894, 66.
[36] Lacasa, L., et al. 2008, Proceedings of the National Academy of Sciences, 105, 4972.
[37] Tsallis, C., & Brigatti, E. 2004, Continuum Mechanics and Thermodynamics, 16, 223.
[38] Tsallis, C., Anteneodo, C., Borland, L., & Osorio, R. 2003, Physica A: Statistical Mechanics and its Applications, 324, 89.
[39] Lotfi, N., & Darooneh, A. H. 2013, Physica A: Statistical Mechanics and its Applications, 392, 3061.
[40] Ōmori, F. 1894, On the after-shocks of earthquakes, The University.
[41] Lotfi, N., et al. 2020, Chaos: An Interdisciplinary J. Nonlinear Science, 30.
[42] Tajik, Z., et al. 2023, Advances in Space Research, 72, 1884–1897.
[43] Taran, S., Khodakarami, E., & Safari, H. 2022, Advances in Space Research, 70, 2541.
[44] Gorski, K. M., et al. 2005, ApJ, 622, 759.
[45] Mohammadi, Z., Alipour, N., Safari, H., & Zamani, F. 2021, J. Geophysical Research: Space Physics, 126, e2020JA028868.
[46] Lan, X., et al. 2015, Chaos: An Interdisciplinary J. Nonlinear Science, 25.
[47] Newman, M. E., & Watts, D. J. 1999, Phys. Rev. E, 60, 7332.
[48] Belov, A., Garcia, H., Kurt, V., & Mavromichalaki, E. 2005, Cosmic Research, 43, 165.
[49] Gopalswamy, N., et al. 2008, Annales Geophysicae, Copernicus Publications Göttingen, Germany, 26, 3033–3047.
[50] Cane, H., Richardson, I., & Von Rosenvinge, T. 2010, J. Geophysical Research: Space Physics, 115.
[51] Dierckxsens, M., et al. 2015, Sol. Phys., 290, 841.
[52] Cliver, E., et al. 2005, IOP Publishing, 631, 604.
[53] Alberti, T., et al. 2017, ApJ, 838, 59.
[54] Daei, F., Safari, H., & Dadashi, N. 2017, ApJ, 845, 36.
[55] Wang, F., Dai, Z., Yi, S., & Xi, S. 2014, ApJS, 216, 8.
[56] Aschwanden, M. J., et al. 2016, Space Sci. Rev., 198, 47.
[57] Nitta, N., Liu, Y., DeRosa, M., & Nightingale, R. 2012, Space Sci. Rev., 171, 61.
[58] Toriumi, S., & Wang, H. 2019, Living Reviews in Sol. Phys., 16, 3.
[59] Iglesias, F. A., et al. 2020, Advances in Space Research, 65, 1641.
[60] McIntosh, S. W., et al. 2014, ApJ, 792, 12.
[61] Song, Y., & Zhang, M. 2016, ApJ, 826, 173.
[62] Consolini, G., Tozzi, R., & De Michelis, P. 2009, A&A, 506, 1381.
[63] Shapoval, A., Le Mouël, J.-L., Shnirman, M., & Courtillot, V. 2018, A&A, 618, A183.
[64] Mohammadi Gouneh, P., Gheibi Fetrat, A., Safari, H., & Mohammadi Gouneh, Z. 2023, J. the Earth and Space Physics, 49, 765.
[65] Mitchell, M. 2006, Artificial intelligence, 170, 1194.
[66] Havlin, S., et al. 2012, The European Physical Journal Special Topics, 214, 273.
[67] Zeng, A., et al. 2017, Phys. Rep., 714, 1.
[68] Nandy, D. 2021, Sol. Phys., 296, 54.
[69] Georgoulis, M. K., et al. 2024, Advances in Space Research.