Zernike Moments Description of Solar and Astronomical Features: Python Code

Document Type : Research Paper

Authors

1 Dept. of Physics, University of Zanjan, Zanjan,, Iran

2 Department of Physics, University of Guilan, Rasht, 41335-1914, Iran

3 Department of Physics, Faculty of Science, University of Zanjan, : University Blvd., Zanjan, 45371-38791, Iran

Abstract

Due to the massive increase in astronomical images (such as James Web, Solar Dynamic Observatory, and Solar Orbiter), automatic image description is essential for solar and astronomical. Zernike moments (ZMs) are unique due to the orthogonality and completeness of Zernike polynomials (ZPs); hence, ZMs are valuable for converting a two-dimensional image to a one-dimensional series of complex numbers. The magnitude of ZMs is rotation invariant, and by applying image normalization, scale and translation invariants can be made, which are helpful properties for describing solar and astronomical images. The lower-order ZMs express the overall shape of the objects of an image, and the higher-order ZMs provide more details of the objects and delicate structures within an image. In this Python package, available at GitHub and PyPI, we describe the characteristics of ZMs via several examples of solar (large and small scale) features, astronomical, and human face images. These independent and unique properties of ZMs can describe the structure and morphology of objects in an image. Hence, ZMs are helpful in machine learning to identify and track the features of several.

Keywords


[1] Goshtasby, A. 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence, 338.
[2] Heywood, M., & Noakes, P. 1995, IEE Proceedings-Vision, Image and Signal Processing, 142, 213.
[3] Aschwanden, M. J. 2010, Solar Physics, 262, 235.
[4] Zheng, C., Pulido, J., Thorman, P., & Hamann, B. 2015, MNRAS, 451, 4445.
[5] Moradkhani, M., Amiri, A., Javaherian, M., & Safari, H. 2015, Applied Soft Computing, 35, 123.
[6] Noori, M., Javaherian, M., Safari, H., & Nadjari, H. 2019, Advances in Space Research, 64, 504.
[7] Honarbakhsh, L., & Morra, G. 2023, J. Geophysical Research (Solid Earth), 128, e2022JB025728.
[8] Gonzaga, A., & Ferreira Costa, J. A. 1996, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, edited by Tescher, A. G. 2847, 223.
[9] Teh, C.-H., & Chin, R. T. 1988, Computer Vision and Pattern Recognition, Proceedings CVPR’88., Computer Society Conference on, IEEE.
[10] Gonzalez, R., & Faisal, Z. 2019, Digital Image Processing Second Edition.
[11] Hu, M.-K. 1962, IRE Transactions on Information Theory, 8, 179.
[12] Flusser, J. 2000, Pattern Recognition, 33, 1405.
[13] Nayak, D. R., Dash, R., & Majhi, B. 2018, J. Med. Syst., 42, 1.
[14] Zhang, Y., Wang, S., Sun, P., & Phillips, P. 2015, Bio-medical materials and engineering, 26, S1283.
[15] Doerr, F., & Florence, A. 2020, International Journal of Pharmaceutics: X, 2.
[16] Mukundan, R., Ong, S., & Lee, P. A. 2001, IEEE Transactions on image Processing, 10, 1357.
[17] Mukundan, R., & Ramakrishnan, K. R. 1995, Pattern Recognit., 28, 1433.
[18] Belkasim, S., Ahmadi, M., & Shridhar, M. 1996, J. the Franklin Institute, 333, 577.
[19] Zhenjiang, M. 2000, Pattern Recognition Letters, 21, 169.
[20] Gu, J., Shu, H., Toumoulin, C., & Luo, L. 2002, pattern Recognition in Information Systems, 35, 2905.
[21] Chong, C.-W., Raveendran, P., & Mukundan, R. 2003, Pattern Recognition, 36, 731.
[22] Sim, D.-G., Kim, H.-K., & Park, R.-H. 2004, Image and Vision Computing, 22, 331.
[23] Mitzias, D. A., & Mertzios, B. G. 2004, Measurement, 36, 315.
[24] Papakostas, G. A., Boutalis, Y. S., Papaodysseus, C., & Fragoulis, D. K. 2006, Image and Vision Computing, 24, 960.
[25] Papakostas, G. A., Boutalis, Y. S., Karras, D. A., & Mertzios, B. G. 2007, Information Sciences, 177, 2802.
[26] Sadeghi, M., Javaherian, M., & Miraghaei, H. 2021, AJ, 161, 94.
[27] Niu, K., & Tian, C. 2022, J. Optics, 24, 123001.
[28] Capalbo, V., et al. 2022, EPJ Web of Conferences, 257, 00008.
[29] Yousefzadeh, M., Safari, H., Attie, R., & Alipour, N. 2016, Solar Physics, 291.
[30] Javaherian, M., Safari, H., Amiri, A., & Ziaei, S. 2014, Solar Physics, 289, .
[31] Shokri, Z., et al. 2022, ApJ, 926, 42.
[32] Hosseini Rad, S., Alipour, N., & Safari, H. 2021, ApJ, 906, 59.
[33] Alipour, N., Safari, H., & Innes, D. E. 2012, ApJ, 746, 12.
[34] Honarbakhsh, L., Alipour, N., & Safari, H. 2016, Solar Physics, 291, 941.
[35] Alipour, N., et al. 2022, A&A, 663, A128.
[36] Raboonik, A., Safari, H., Dadashi, N., & Alipour, N. 2016, 41st COSPAR Scientific Assembly.
[37] Wheatland, M., Alipour, N., Raboonik, A., & Safari, H. 2017, Institute of Physics Publishing.
[38] Alipour, N., Mohammadi, F., & Safari, H. 2019, ApJS, 243, 20.
[39] Grubbström, R. W., & Tang, O. 2006, European J. Operational Research, 170, 106.
[40] Wolf, C., et al., Technical report, Technical Report LIRIS. Available at http://liris.
cnrs. fr/Documents/Liris-5294. pdf (unpublished).
[41] Khotanzad, A., & Hong, Y. H. 1990, IEEE Transactions on pattern analysis and machine intelligence, 12, 489.
[42] Alipour, N., & Safari, H. 2015, ApJ, 807, 175.
[43] Shutler, J. D., & Nixon, M. S. 2001, Proceedings of the British Machine Vision Conference.