Magnetoacoustic Wave Dynamics and a Magnetic Null-Point

Document Type : Research Paper

Authors

1 Faculty of Physics, University of Tabriz, Tabriz, Iran

2 Faculty of Physics, University of Tabriz, Tabriz

3 Department of Physics, Tafresh University, Tafresh 39518-79611, Iran

4 University of Tabriz

Abstract

The solar wind acceleration and the coronal heating are two aspects of the solar atmosphere that comprise many physical phenomena. Some features of the solar atmosphere are somehow independent but some seem to be part of a chain reaction. In this study, the interaction of a magnetoacoustic pulse is highlighted with a two dimensional magnetic null point. A simple two dimensional magnetic null-point in the (x, y) plane is subject to a circlular pulse where its initial starting point depends on the solar atmospheric conditions. An analytic relation is presented that governs the density perturbations due to the nearing of the magnetoacoustic pulse. This enables a deeper insight on the effects of the zero and finite plasma-β conditions on the density perturbations. The analytic results are accompanied by numerical plots using the PLUTO code. The results indicate that finite plasma- β conditions decrease the plasma density at the magnetic null-point. This proves adequate for considering atmospheric conditions to prevent inaccurate conclusions regarding the interaction and energy transfer.

Keywords


[1] Moreno-Insertis, F., Galsgaard, K., & Ugarte-Urra, I. 2008, ApJ, 673, L211.
[2] Shibata, K., & et al. 2007, Science, 318, 7.
[3] Cho, I. H., Moon, Y. J., Cho, K. S., & et al. 2019, ApJ, 884, L38.
[4] Cirtain, J. W., Golub, L., Lundquist, L., & et al. 2007, Science, 318, 1580.
[5] Craig, I. J. D., & Mc Clymont, A. N. 1991, ApJ, 371, L41.
[6] Craig, I. J., & Watson, P. G. 1992, ApJ, 393, 385.
[7] Longcope, D. W., & Priest, E. R. 2007, Phys. Plasmas, 14, 122905.
[8] McLaughlin, J. A., & Hood, A. W. 2004, A&A, 420, 1129.
[9] McLaughlin, J. A., Hood, A. W., & de Moortel, I. 2011, SSRv, 158, 205.
[10] Sabri, S., Vasheghani Farahani, S., Ebadi, H., Hosseinpour, M., & Fazel, Z. 2018, MNRAS, 479, 4991.
[11] Sabri, S., Vasheghani Farahani, S., Poedts, S., & Ebadi, H. 2020, Scientific Reports, 10, 15603.
[12] Goossens, M., An introduction to plasma astrophysics and magnetohydrodynamics, Volume 294 of Astrophysics and Space Science Library, October 2003.
[13] Van Doorsselaere, T., Srivastava, A. K., Antolin, P., Magyar, N., Vasheghani Farahani, S., & et al. Space Sci. Rev. 2020, 216, 140.
[14] Vasheghani Farahani, S., & Hejazi, S. M. 2017, ApJ, 844, 148.
[15] Vasheghani Farahani, S., Hejazi, S. M., & Boroomand, M. R. 2021, ApJ, 906, 70.
[16] Galsgaard, K., Priest, E. R, & Titov, V. S. 2003, J. Geophys. Res. Space Phys., 108, 1042.
[17] Thurgood, J. O. & McLaughlin, J. A. 2013, A&A, 555, A86.
[18] McLaughlin, J. A., & Hood, A. W. 2006, A&A, 452, 603.
[19] McLaughlin, J. A., De Moortel, I., Hood, A. W., & Bardy, C. S. 2009. A&A, 493, 227.
[20] Brown, D. S., & Priest, E. R. 2001, A&A., 367, 339.
[21] Gruszecki, M., Vasheghani Farahani, S., Nakariakov, V. M., & Arber, T. D. 2011, A&A, 531, A63.
[22] Bulanov, S. V., & Syrovatskii, S. I. 1980, Fiz, Plazmy, 6, 1205.
[23] McLaughlin, J. A., & Hood, A. W. 2005, A&A, 435, 313.
[24] Craig, I. J. D., & Fabling, R. B. 1996, ApJ, 462, 969.
[25] Pontin, D. I., & Glasgaard, K. 2007, J. Geophys. Res., 112, 3103.
[26] Nakariakov, V. M., Foullon, C., Verwichte, E., & Young, N. P. 2006, A&A, 452, 343.
[27] Mignone, A., Bodo, G., Massaglia, S., & et al. 2007, ApJS, 170, 228.
[28] Mignone, A., Zanni, C., Tzeferacos, P., & et al. 2012, ApJS, 198, 7.
[29] Karampelas, K., McLaughlin, J. A., Botha, G. J. J., & et al. 2022, ApJ, 925, 195.