The influence of Asymmetric Inflow Reconnection on the Diffusion Region in Resistive Space Plasmas

Document Type : Research Paper

Authors

1 Faculty of Physics, University of Tabriz, Iran

2 Faculty of Physics, University of Tabriz

Abstract

To investigate the effect of asymmetric magnetic reconnection on the
development of the diffusion region and growth of magnetic islands induced during
reconnection (plasmoids), we use 2-dimensional resistive magnetohydrodynamics sim-
ulations. In particular, we consider the strength of the magnetic field and plasma mass
density to be dissimilar on both sides of the current sheet. For three cases, the results
show that the initial X-point position shifts from the center of the diffusion region to
the stronger magnetic field while the plasmoids grow toward the weaker magnetic field.
Also, the increase of asymmetry in the magnetic field and plasma mass density leads to
the reconnection rate and the growth time of plasmoid instability becoming less. Due
to the displacement of reconnection sites in asymmetric cases, the output momentum
from these sites does not directly collide with the outflow jets, so the velocity of the
outflow jets is lower than in the symmetric case.

Keywords


[1] Hess, M., & Cassak, P. A. 2020, J. Geophy. Res: Space Physics, 125, e2018JA025935.
[2] Zweibel, E. G., & Yamada, M. 2009, ARA&A, 47, 291.
[3] Yamada, M., Kulsrud, R., & Ji, H. 2010, Rev. Mod. Phys., 82, 603.
[4] Priest, E., & Forbes, T. 2007, Magnetic reconnection. Cambridge University Press, Cambridge.
[5] Sweet, P. A. 1958, The neutral point theory of solar flares. Cambridge University Press, Cambridge.
[6] Parker, E. N. 1957, JGR, 62, 509.
[7] Petscheck, H. E. 1964, NASSP, 50, 425.
[8] Drake, J. F., Shay, M. A., & Swisdak, M. 2008, Physics of Plasmas, 15, 042306.
[9] Shay, M. A., Drake, J. F., Rogers, B. N., & Denton, R. E. 2001, JGR: Space Physics, 106, 3759.
[10] Biskamp, D. 1986, Physics of Fluids, 29, 1520.
[11] Bhattacharjee, A., Huang, Y. M., Yang, H., & Rogers, B. 2009, Physics of Plasmas, 16, 112102.
[12] Loureiro, N. F., Samtaney, R., Schekochihin, A. A., & Uzdensky, D. A. 2012, Physics of Plasmas, 19, 042303.
[13] Comisso, L., Lingam, M., Huang, Y. M., & Bhattacharjee, A. 2017, APJ, 850, 142.
[14] Shimizu, T., Kondoh, K., & Zenitani, S. 2017, Physics of Plasmas, 24, 112117.
[15] Liu, Z., Su, W., Ao, J., Wang, M., Jiang, Q., He, J., ... & Ji, M. 2022, Nature communications, 13, 4050.
[16] Sindhuja, G., & Gopalswamy, N. 2020, APJ, 889, 104.
[17] Bhattacharjee, A. 2004, Annu. Rev. Astron. Astrophys., 42, 365.
[18] Yamada, M., Levinton, F. M., Pomphrey, N., Budny, R., Manickam, J., & Nagayama, Y. 1994, Physics of Plasmas, 1, 3269.
[19] Lotfi, H., & Hosseinpour, M. 2021, Front. Astron. Space Sci., 176.
[20] Ni, L., Ziegler, U., Huang, Y. M., Lin, J., & Mei, Z. 2012, Physics of Plasmas, 19, 072902.
[21] Zenitani, S., & Miyoshi, T. 2020, APJ, 894, L7.
[22] Majeski, S., Ji, H., Jara-Almonte, J., & Yoo, J. 2021, Physics of Plasmas, 28, 092106.
[23] Stanier, A., Daughton, W., Simakov, A. N., Chacon, L., Le, A., Karimabadi, H., & Bhattacharjee, A. 2017, Physics of Plasmas, 24, 022124.
[24] Ahmad, N., Ping, Z. H. U., Ahmad, A. L. I., & Shiyong, Z. E. N. G. 2021, PST, 24, 015103.
[25] Comisso, L., & Grasso, D. 2016, Physics of Plasmas, 23, 032111.
[26] Hosseinpour, M., Chen, Y., & Zenitani, S. 2018, Physics of Plasmas, 25, 102117.
[27] Mahapatra, J., Bokshi, A., Ganesh, R., & Sen, A. 2021, Physics of Plasmas, 28, 072103.
[28] Lotfi, H., & Hosseinpour, M. 2022, JTAP, 16.
[29] Hasegawa, H., Wang, J., Dunlop, M. W., Pu, Z. Y., Zhang, Q. H., Lavraud, B., & Bogdanova, Y. V. 2010, Geophys. Res. Lett., 37.
[30] Phan, T. D., & Paschmann, G. 1996, J. Geophy. Res: Space Physics, 101, 7801.
[31] ieroset, M., Phan, T. D., & Fujimoto, M. 2004, Geophys. Res. Lett, 31.
[32] Gosling, J. T., Eriksson, S., Skoug, R. M., McComas, D. J., & Forsyth, R. J. 2006, APJ, 644, 613.
[33] Servidio, S., Matthaeus, W. H., Shay, M. A., Cassak, P. A., & Dmitruk, P. 2009, Phys. Rev. Lett., 102, 115003.
[34] Servidio, S., Matthaeus, W. H., Shay, M. A., Dmitruk, P., Cassak, P. A., & Wan, M. 2010, Physics of Plasmas, 17, 032315.
[35] Beidler, M. T., & Cassak, P. A. 2011, Phys. Rev. Lett., 107, 255002.
[36] Murphy, N. A., & Sovinec, C. R. 2008, Physics of Plasmas, 15, 042313.
[37] Murphy, N. A., Miralles, M. P., Pope, C. L., Raymond, J. C., Winter, H. D., Reeves, K. K., & Lin, J. 2012, APJ, 751, 56.
[38] Ono, Y., Inomoto, M., Okazaki, T., & Ueda, Y. 1997, Physics of Plasmas, 4, 1953.
[39] Petschek, H. E., & Thorne, R. M. 1967, APJ, 147, 1157.
[40] Hoshino, M., & Nishida, A. 1983, J. Geophy. Res: Space Physics, 88, 6926.
[41] Tang, S. Y., Zhang, Y. C., Dai, L., Chen, T., & Wang, C. 2021, APJ, 922, 96.
[42] Cassak, P. A., & Shay, M. A. 2007, Physics of Plasmas, 14, 102114.
[43] Cassak, P. A., & Shay, M. A. 2009, Physics of Plasmas, 16, 055704.
[44] Borovsky, J. E., & Hesse, M. 2007, Physics of Plasmas, 14, 102309.
[45] Birn, J., Borovsky, J. E., Hesse, M., & Schindler, K. 2010, Physics of Plasmas, 17, 052108.
[46] Murphy, N. A., Young, A. K., Shen, C., Lin, J., & Ni, L. 2013, Physics of Plasmas, 20, 061211.
[47] Kondoh, K., Ugai, M., & Shimizu, T. 2004, Advances in Space Research, 33, 794.
[48] Zenitani, S. 2016, Astrophysics Source Code Library, ascl, 1604.
[49] Miyoshi, T., & Kusano, K. 2005, J. comput. phys, 208, 315.
[50] Shimizu, T., Kondoh, K., & Zenitani, S. 2017, Physics of Plasmas, 24, 112117.