Chromospheric Jets and Their Properties

Authors

1 Physics Department, Payame Noor University (PNU), 19395-3697-Tehran, I. R. of Iran

2 Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Abstract

In this study we review solar chromospheric jets and characteristics of them. The chromosphere and transition region are the interface between the solar photosphere and the corona, which plays a key role in the formation and acceleration of the solar wind. In recent years, scientists have made great efforts to understand the mechanism of energy transfer in the solar chromosphere and corona. The researchers suggest that the key to solving this problem may lie in understanding the nature of the small-scale transient events that are distributed across the surface of the Sun. Of these, solar spicules are the most prominent small-scale dynamical phenomena in the chromospheric regions that drive relatively cold material from the lower chromosphere to the corona. Spicules can heat the corona both by ejecting hot plasma and by energy transfer by magnetohydrodynamic (MHD) waves. These dynamical structures are formed when photospheric oscillations and convective flow along the magnetic field lines penetrate into the chromosphere.

Keywords


[1] Ajabshirizade, A., Tavabi, E., & Koutchmy, S. 2008, New Astronomy, 13, 93.
[2] Ajabshirizade, A., Tavabi, E., & Koutchmy, S. 2009, Ap&SS, 319, 31.
[3] Dere, K. P., Baratoe, J. D. F., & Brueckner, G. E. 1983, ApJ, 267, 65.
[4] De Pontieu, B., Hansteen, V. H., Rouppe van der Voort, L., van Noort, M., & Carlsson, M. 2007, ASP, 368, 65.
[5] De Pontieu, B., McIntosh, S., Hansteen, V. H., Carlsson, M., & et al. 2007, Publ. Astron. Soc. Jap. 59, 655.
[6] De pontieu, B., Erdelyi, R., & James, S. 2004, Nature, 536, 430.
[7] Filippov, B., & Koutchmy, S. 2000, Solar Phys. 196, 311.
[8] Hansteen, V. H., DePontieu, B., Rouppe van derVoort, L., vanNoort, M., & Carlsson, M. 2006, ApJ, 647L, 73H.
[9] He, J. S., Tu, C. Y., Marsch, E., Guo, L. J., Yao, S., & Tian, H. 2009, A&A, 497, 525.
[10] He, J., Marsch, E., Tu, C., & Tian, H. 2009, ApJ, 705, 217.
[11] Jefferies, S. M., Mcintosh, S. W., Armstrong, J. D., Bogdan, T. J., Cacciani, A., & Fleck, B. 2006, ApJ, 648, L151.
[12] Koutchmy, O., & Koutchmy, S. 1989, Optimum filter and frame integration application to granulation pictures, in: von der Luhe, O. (Ed.), Proceedings of 10th Sacramento Peak Summer Workshop, High Spatial Resolution Solar Observations. National Solar Observatory, Sunspot, 217.
[13] Krishna Prasad, S., Banerjee, D., & Jagdev S. 2012, Solar Phys. 281, 67.
[14] Lawrence, J. K., & Cadavid, A. C. 2012, Solar Phys., 280, 125.
[15] McIntosh, S. W., De Pontieu, B., Carlsson, M., Hansteen, V., Boerner, P., & Goossens, M. 2011, Nature, 475, 477.
[16] Nikolsky, G. M., & Platova, R. 1971, Sol. Phys. 18, 403.
[17] Noyes, R. W. 1967, Observational Studies of Velocity Fields in the Solar Photosphere and Chromosphere Aerodynamics Phenomena in Stellar Atmosphere, I.A.U. Symp. 28., 293.
[18] Pereira, T. M. D., De Pontieu, B., & Carlsson, M. 2012, ApJ, 759, 18.
[19] Pasachof, J. M., Noyes, R. W., & Beckers, J. M. 1968, Solar Phys., 5, 131.
[20] Rouppe van der Voort, L., De Pontieu, B., Hansteen, V., Carlsson, M., & van Noort, M. 2007, ApJ, 660, L169.
[21] Suematsu, Y., Wang, H., & Zirin, H. 1995, ApJ, 450, 411.
[22] Stix, M. The Sun. s.l.: Springer, 2002.
[23] Sekse, D. H., Rouppe van der Voort, L., De Pontieu, B., & Scullion, E. 2013, 44, 11.
[24] Tavabi, E., Koutchmy, S., & Ajabshirizadeh, A. 2011, New Astronomy, 16, 296.
[25] Tavabi, E. 2014, Ap&SSL, 352, 43.
[26] Tavabi, E., & Koutchmy, S. 2014, Ap&SSL, 352, 7.
[27] Tavabi, E., Koutchmy, S., & Golub, L. 2015, SoPh., 290.
[28] Tavabi, E., Koutchmy, S., Ajabshirizadeh, A., Ahangarzadeh Maralani, A. R., & Zeighami, S. 2015, A&A, 573, 7.
[29] Tavabi, E., Ajabshirizadeh, A., Ahangarzadeh Maralani, A. R., & Zeighami, S. 2015, J. A&A, 36, 307.
[30] Tavabi, E. 2012, J. Mod. Phys., 3, 1791.
[31] Tavabi, E. 2018, MNRAS., 476, 868.
[32] Tavabi, E., & Koutchmy, S. 2019, ApJ., 883, 41T.
[33] Tavabi, E., Koutchmy, S., & Ajabshirizadeh, A. 2013, Solar Phys. 283, 187.
[34] Tavabi, E. 2014, Ap&SS, 350, 489.
[35] Tavabi, E., Koutchmy, S., & Ajabshirizadeh, A. 2011, Advances in Space Research, 47, 2019.
[36] Tavabi, E., Zeighami, S., & Heydari, M. 2022, Solar Physics, 297, 1.
[37] Wilhelm, K. 2000, A&A, 360, 351.
[38] Wedemeyer-Bohm, S., Lagg, A., & Nordlund, A. 2009, Space Sci. Rev. 144, 317.
[39] Xia, L. D., Popescu, M. D., & Doyle, J. G. 2005, A&A, 438, 1115.
[40] Zaqarashvili, T. V., & Erdelyi, R. 2009, Space Sci. Rev., 149, 355.
[41] Zeighami, S., Ahangarzadeh Maralani, A. R., Tavabi, E., & Ajabshirizadeh, A. 2016, Sol. Phys. 291, 847.
[42] Zeighami, S., Tavabi, E., & Amirkhanlou, E., 2020, J. A&A, 41, 18Z.
[43] Zeighami, S., & Tavabi, E. 2021, Journal of the Earth and Space Physics.
[44] Zeighami, S., & Tavabi, E. 2021, IJAA.
[45] Zeighami, S., Tavabi, E., & Ajabshirizadeh, A. 2022, Journal of the Earth and Space Physics