Plasma Evolutions Around a Solar Coronal 3D Magnetic Null Point

Document Type : Research Paper

Authors

1 University of Tabriz

2 University of UTabriz

Abstract

It is investigated how the plasma evaluates due to the propagation of the nonlinear Alfven wave. Magnetic null points that are detected in the solar corona have 3D structures which are prevalent in the solar atmosphere. In this study, we consider the real 3D structure with a 3D magnetic null point. The shock-capturing Godunovtype PLUTO code is used to solve the resistive magnetohydrodynamic (MHD) set of equations in the context of wave-plasma energy transfer to find out how the plasma evaluates. An initially symmetric Alfv´en pulse at a specific distance from a magnetic null-point is kicked towards the isothermal null-point. Alfven wave propagation around a 3D magnetic null point results in magnetoacoustic waves perturbations which propagate towards the null point and refracts around the null point.It is found that nonlinear Alfven wave propagation around a 3D magnetic null point results in plasma density perturbations due to the compressible magnetoacoustic waves perturbations.

Keywords


[1] Brown, D. S., & Priest, E. R. 2001, A&A., 367, 339.
[2] Priest, E. R., & Forbes, T. 2000, Cambridge University Press.
[3] Threlfall, J., Parnell, C. E., De Moortel, I., McClements. K. G., & Arber, T. D. 2012, A&A., 544, A24.
[4] Antichos, S. K. 1998, ApJ., 502, L181.
[5] Antichos, S. K, DeVore, C. R., & Klimchuk, J. A. 1999, ApJ., 510, 485.
[6] Close, R. M., Parnell, C. E., & Priest, E. R. 2004, Sol. Phys., 225, 21.
[7] Longcope, D. W., & Parnell, C. E. 2009, Sol. Phys., 254, 51.
[8] Galsgaard, K., Priest, E. R., & Titov, V. S. 2003, Space Physics, 108, 1.
[9] Pontin, D. I., Bhattacharjee, A., & Galsgaard, K. 2007, Physics of Plasmas, 14, 052106.
[10] Galsgaard, K., & Pontin, D. I. 2011a, A&A., 529, A20.
[11] McLaughlin, J. A., Ferguson, J. S. L., & Hood, A. W., 2008, Sol. Phys., 251, 563.
[12] Rickard, G. J., & Titov, V. S. 1996, ApJ., 472, 840.
[13] Nakariakov, V. M., & Verwichte, E. 2005, Liv. Rev. Sol. Phys., 2.
[14] Aschwanden, M. Fletcher, L. Schrijver, C. J., & Alexander, D. 1999, ApJ., 520, 880.
[15] McLaughlin, J. A., & Hood, A. W. 2006b, A&A., 459, 641.
[16] McLaughlin, J. A., De Moortel, I., Hood, A. W., & Brady, C. S. 2009, A&A., 493, 227.
[17] Sabri, S., Vasheghani Farahani, S., Ebadi, H., Hosseinpour, M., & Fazel, Z. 2018, MNRAS., 479, 4991.
[18] Sabri, S., Poedts, S., & Ebadi, H. 2019, A&A., 623, A81.
[19] Sabri, S., Ebadi, H., & Poedts, S. 2020, ApJ., 902, 11.
[20] Sabri, S., Vasheghani Farahani, S., Ebadi, H., & Poedts, S. 2020, Sci. Rep., 10, 15603.
[21] Sabri, S., Ebadi, H., & Poedts, S. 2021, ApJ., 922, 123.
[22] Sabri, S., Ebadi, H., & Poedts, S. 2021, ApJ., 924, 126.
[23] Hollweg, J. V., 1981, Sol. Phys., 70, 25.
[24] Chmielewski, P., Srivastava, A. K., Murawski, K., & Musielak, Z. E. 2013, MNRAS., 428, 40.
[25] Hollweg, J. V. 1992, ApJ., 389, 731.
[26] Cargill, P., Spicer, D. S., & Zalesak, L. S. 1997, ApJ., 488, 854.
[27] Jess, D. B., Mathioudakis, M., Erdelyi, R., Crokett, P. J., Keenan, F. P & Christian,
D. J. 2009, Science, 323, 1582.
[28] Sekse, D. H., Rouppe van der Voort, L., De Pontieu, B., & Scullion, E. 2013, ApJ., 769, 44.
[29] Wedemeyer-Bohm, S., Scullion, E., Steiner, O., Rouppe van der Voort, L., de La Cruz Rodriguez, J., Fedun, V., & Erdelyi, R. 2012, Nature, 486, 505.
[30] Wedemeyer-Bohm, S., Van der Voort, L. R. 2009, A&AL, 507, L9.
[31] Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., & Ferrari, A., et al. 2007, ApJS., 170, 228.
[32] Mignone, A., & Bodo, G. 2005, MNRAS., 364, 126.
[33] Miyoshi, T., & Kusano, K. 2005, Journal of Computational Physics, 208, 315.
[34] Mignone, A., Ugliano, M., & Bodo, G. 2009, MNRAS., 393, 1141.
[35] Nakaraikov, V. M., Roberts, B., & Murawski, K. 1997, Sol. Phys., 175, 93.
[36] Ofman, L., & Davila, J. M. 1995, Geophys. Res., 100, 23413.
[37] Zheng, J., Chen, Y., & Yu, M. 2016, Phys. Scr., 91, 015601.
[38] Thurgood, J. O., & McLaughlin, J. A. 2018, ApJ., 855, 50.