A Review of Solar Spectral Analysis

Document Type : Review Paper

Authors

1 Department of Physics, Faculty of Science, University of Zanjan, University Blvd., P.O. Box 45371-38791, Zanjan, Iran

2 Department of Geography, Faculty of Basic Sciences, Imam Ali Nazaja University, P.O. Box 1317893471, Tehran, Iran

3 Department of physics, Faculty of Science, Imam Ali University, P.O. Box 1317893471, Tehran, Iran

10.22128/ijaa.2026.3207.1241

Abstract

Solar spectral lines are among the most powerful diagnostics of plasma conditions in the solar atmosphere, providing constraints on temperature, density, flows, turbulence, magnetic fields, and energy release processes. High-resolution ultraviolet and X-ray observations reveal that solar line profiles often deviate from idealized symmetric Gaussian shapes, exhibiting excess broadening, asymmetries, and multi-component structures from the chromosphere to the flaring corona. This review presents an overview of the physical mechanisms governing solar spectral line formation, symmetry, asymmetry, and broadening, with emphasis on ultraviolet and extreme-ultraviolet diagnostics. We discuss the roles of thermal and non-thermal Doppler motions, unresolved flows, wave activity, magnetic and Stark effects, opacity-related processes, and instrumental broadening. Particular attention is given to transition-region lines, where multiple plasma components and highly dynamic heating processes produce complex, non-Gaussian profiles. We also review widely used methods for spectral line analysis, including single- and multi-Gaussian fitting, Lorentzian and Voigt representations, and Bayesian Markov Chain Monte Carlo approaches that enable robust parameter estimation and model comparison. Recent IRIS observations show that asymmetric Si\,\textsc{iv} line profiles are widespread in flaring and non-flaring conditions and often require multi-component modeling. Finally, we outline current challenges and emerging directions in solar spectroscopy, including instrumental calibration, cross-instrument consistency, and physics-informed analysis techniques. Future coordinated observations and improved inversion methods are expected to enhance the diagnostic potential of solar spectral lines and advance our understanding of plasma heating, magnetic reconnection, and energy transport in the solar atmosphere.

Keywords


[1] Phillips, K. J. H., Feldman, U., & Landi, E. 2008, Ultraviolet and X-ray Spectroscopy of the Solar Atmosphere, Cambridge University Press.
[2] Del Zanna, G., & Mason, H. E. 2018, Living Reviews in Sol. Phys., 15, 5.
[3] Peter, H. 2010, A&A, 518, A51.
[4] Asplund, M. e. a. 2000, A&A, 359, 729.
[5] Carlsson, M., & Stein, R. F. 1997, ApJ, 481, 500.
[6] Rutten, R. J. 2019, Living Reviews in Sol. Phys.,
[7] Del Zanna, G., & Mason, H. E. 2018, Living Reviews in Sol. Phys., 15, 5.
[8] Doschek, G. A., & Warren, H. P. 2016, ApJ, 825, 36.
[9] Reale, F. 2014, Living Reviews in Sol. Phys., 11, 4.
[10] Dzifčáková, E. e. a. 2015, ApJS, 213, 2.
[11] De Pontieu, B. e. a. 2007, Science, 318, 1574.
[12] Testa, P. e. a. 2014, Science, 346, 1255724.
[13] Young, P. R. e. a. 2018, ApJ.
[14] Culhane, J. L. e. a. 1991, Sol. Phys., 136, 89.
[15] Wilhelm, K. e. a. 1995, Sol. Phys., 162, 189.
[16] Culhane, J. L. e. a. 2007, Sol. Phys., 243, 19.
[17] De Pontieu, B. e. a. 2014, Sol. Phys., 289, 2733.
[18] Krucker, S. e. a. 2020, A&A, 642, A15.
[19] Rochus, P., et al. 2020, A&A, 642, A8.
[20] Kuridze, D., et al. 2021, J. Physics: Conference Series.
[21] Cheung, M. C. M. e. a. 2019, Nature Astronomy, 3, 160.
[22] Asensio Ramos, A., & Díaz Baso, C. J. 2019, A&A, 626, A102.
[23] Sainz Dalda, A., de la Cruz Rodriguez, J., De Pontieu, B., & Gosic, M. 2019, ApJ, 875, L18.
[24] Cheung, M. C. M., et al. 2019, ApJ, 882, 13.
[25] Dere, K. P., et al. 1997, A&AS, 125, 149.
[26] Leenaarts, J. e. a. 2013, ApJ, 772, 89.
[27] Rathore, B., Carlsson, M., & Leenaarts, J. 2015, ApJ, 811, 81.
[28] Landi Degl’Innocenti, E., & Landolfi, M. 2004, Polarization in Spectral Lines, Kluwer Academic Publishers.
[29] Teriaca, L., et al. 2012, A&A, 548, A28.
[30] Peter, H., et al. 2014, Science, 346, 1255726.
[31] Klimchuk, J. A. 2015, Philosophical Transactions of the Royal Society A, 373, 20140256.
[32] Del Zanna, G., et al. 2015, A&A, 582, A56.
[33] Gudiksen, B. V., et al. 2011, A&A, 531, A154.
[34] Allred, J., et al. 2015, ApJ, 809, 104.
[35] Young, P. R. 2021, Frontiers in Astronomy and Space Sciences, 8, 662790.
[36] Müller, D., et al. 2020, A&A, 642, A1.
[37] Doschek, G. A., et al. 2012, ApJ, 750, 22.
[38] Brooks, D. H., & Warren, H. P. 2016, ApJ, 820, 63.
[39] Woods, T. N., et al. 2012, Sol. Phys., 275, 115.
[40] Kuridze, D., et al. 2021, J. Physics: Conference Series.
[41] Testa, P., et al. 2021, Frontiers in Astronomy and Space Sciences, 8, 662790.
[42] Liu, L., et al. 2020, ApJ, 894, 70.
[43] Tian, H., et al. 2014, ApJ, 790, L29.
[44] Chamberlin, P. C., et al. 2009, Sol. Phys., 256, 255.
[45] Del Zanna, G. 2021, A&A.
[46] Curdt, W., et al. 2001, A&A, 375, 591.
[47] Bradshaw, S., & Mason, H. 2009, ApJ, 699, 1362.
[48] Rutten, R. 2003, Radiative transfer in stellar atmospheres.
[49] Dere, K. e. a. 2019, ApJS, 241, 22.
[50] Summers, H. 2004, Culham Laboratory Report.
[51] Brooks, D., & Warren, H. 2011, ApJ, 727, L13.
[52] Phillips, K. 2004, Advances in Space Research, 34, 410.
[53] Warren, H. e. a. 2008, ApJ, 677, 1395.
[54] Hannah, I. G., & Kontar, E. P. 2012, A&A, 539, A146.
[55] Holman, G. e. a. 2011, ApJ, 731, L52.
[56] Peter, H., & Judge, P. 1999, ApJ, 522, 1148.
[57] Dadashi, N., Teriaca, L., & Solanki, S. K. 2011, A&A, 534, A90.
[58] Brooks, D. H., Ugarte-Urra, I., & Warren, H. P. 2015, Nature Communications, 6, 5947.
[59] McIntosh, S. e. a. 2011, Nature, 475, 477.
[60] Bradshaw, S. e. a. 2006, A&A, 454, L41.
[61] Landi, E., & Miralles, M. 2012, ApJ, 744, 99.
[62] Boerner, P. e. a. 2014, Sol. Phys., 289, 2377.
[63] Feldman, U. 1992, Phys. Scr, 46, 202.
[64] Laming, J. 2015, Living Reviews in Sol. Phys., 12, 2.
[65] Yang, L. e. a. 2020, ApJ, 894, L6.
[66] Tian, H. e. a. 2011, ApJ, 736, 130.
[67] Dere, K. 1989, ApJ, 345, L95.
[68] Polito, V. e. a. 2015, ApJ, 803, 84.
[69] Young, P. 2015, ApJ, 801, 124.
[70] Polito, V. e. a. 2018, ApJ, 856, 178.
[71] De Pontieu, B. e. a. 2015, ApJ, 799, L12.
[72] Milligan, R. e. a. 2009, ApJ, 699, 968.
[73] Fisher, G. e. a. 1989, ApJ, 346, 1019.
[74] Reep, J. e. a. 2016, ApJ, 827, 145.
[75] Antolin, P. e. a. 2015, ApJ, 806, 81.
[76] Scullion, E. e. a. 2016, ApJ, 833, 184.
[77] Tian, H. e. a. 2011, ApJ, 736, 130.
[78] Imada, S. e. a. 2011, ApJ, 742, L18.
[79] Jeffrey, N. L. S., et al. 2021, Frontiers in Astronomy and Space Sciences, 8, 662790.
[80] Van Doorsselaere, T., et al. 2020, Space Sci. Rev., 216, 140.
[81] Testa, P., et al. 2016, ApJ, 827, 99.
[82] Cranmer, S., et al. 2008, ApJ, 677, L33.
[83] Milligan, R. O. 2011, ApJ, 740, 70.
[84] Graham, D. R., & Cauzzi, G. 2013, A&A, 551, A29.
[85] Ding, M. D., & Fang, C. 1995, ApJ, 450, L115.
[86] Rubio da Costa, F., Kleint, L., & Petrosian, V. 2016, ApJ, 827, 38.
[87] Kowalski, A. F., et al. 2017, ApJ, 836, 12.
[88] Solanki, S. K., Inhester, B., & Schüssler, M. 2006, Reports on Progress in Physics, 69, 563.
[89] Lites, B. W., et al. 2013, Sol. Phys., 283, 579. [90] Rachmeler, L., et al. 2022, A&A, 660, A45.
[91] Rouppe van der Voort, L., et al. 2016, ApJ, 832, 52.
[92] Mariska, J. 1992, The Solar Transition Region, Cambridge University Press.
[93] Hosseini, R., Kayshap, P., Alipour, N., & Safari, H. 2024, MNRAS, 529, 3424.
[94] Mohammadiun, Z., Safari, H., & Tripathi, D. 2025, ApJ. accepted for publication.
[95] Hosseini, R., et al. 2024, Identification of the asymmetric spectral profiles in the solar transition region, J. the Earth and Space Physics.
[96] Griem, H. R. 1974, Spectral Line Broadening by Plasmas, Pure and Applied Physics, Academic Press.
[97] Rimmele, T. R., et al. 2020, Sol. Phys., 295, 1.
[98] Carlsson, M., et al. 2016, A&A, 585, A4.
[99] Delouille, V., et al. 2018, LRSP, 15, 6.
[100] Harra, L., et al. 2021, Frontiers in Astronomy and Space Sciences, 8, 662790.
[101] Patsourakos, S., et al. 2020, Space Sci. Rev., 216, 131.
[102] Judge, P., et al. 2015, ApJ, 808, 116.
[103] Young, P. R. 2011, ApJ, 744, 14.
[104] Velli, M., et al. 2020, A&A, 642, A1.
[105] Asensio Ramos, A., & Díaz Baso, C. J. 2018, A&A, 614, A5.
[106] Camporeale, E. 2019, Space Weather.