Numerical Modeling of the Solar Wind: Fluid, Kinetic, and Hybrid Approaches

Document Type : Review Paper

Author

Faculty of Physics, University of Tabriz, PO Box 51666-16471, Tabriz, Iran

Abstract

This paper provides a comprehensive overview of the numerical methods used to model the solar wind, integrating fluid, kinetic, and hybrid perspectives. Beginning with the foundations of solar wind theory and the development of magnetohydrodynamic (MHD) models, we discuss how fluid-based formulations enable the simulation of global structures such as coronal mass ejections, shocks, and large-scale variations in the heliospheric magnetic field. To address processes that fall outside the scope of MHD, we examine kinetic modeling based on the Vlasov–Maxwell equations, emphasizing its capability to reproduce non-Maxwellian particle distributions, wave–particle interactions, temperature anisotropies, and collisionless heating. Hybrid approaches that merge MHD with kinetic techniques are highlighted as essential tools for capturing the multi-scale nature of the solar wind, particularly in regions where macroscopic flows couple to microphysical dynamics. The paper further reviews major numerical strategies used in solar wind simulations, comparing explicit and implicit time integration, adaptive mesh refinement, Particle-in-Cell (PIC) methods, and semi-Lagrangian approaches. Key stability considerations—including boundary-condition selection, the Courant–Friedrichs–Lewy (CFL) constraint, appropriate spatial and velocity-space resolution, and the targeted use of artificial diffusion—are discussed in relation to their impact on accuracy and robustness. Example simulations demonstrate the ability of advanced models to reproduce observed proton and electron temperature profiles \textbf{from the Sun out to 1AU}. Overall, numerical modeling plays a central role in interpreting solar wind observations and predicting space-weather conditions, and ongoing advances in computational methods continue to strengthen our understanding of heliospheric plasma dynamics.

Keywords


[1] Council, N. R., et al. 2004, Plasma physics of the local cosmos, National Academies Press.
[2] Council, N. R., et al. 2004, Solar and Space Physics and Its Role in Space Exploration, National Academies Press.
[3] Mandea, M., Korte, M., Yau, A., & Petrovsky, E. 2019, Geomagnetism, Aeronomy and Space Weather: A Journey from the Earth’s Core to the Sun.
[4] Taran, S., et al. 2023, Advances in Space Research, 71, 5453.
[5] Nandy, D., et al. 2023, J. Atmospheric and Solar-Terrestrial Physics, 248, 106081.
[6] Parker, E. 1958, The Physics of Fluids, 1, 171.
[7] Echim, M. M., Lemaire, J., & Lie-Svendsen, O. 2011, Surveys in geophysics, 32, 1.
[8] Moschou, S.-P., 2016, Dynamics of the solar atmosphere and solar wind modeling.
[9] Feng, X. 2019, Magnetohydrodynamic modeling of the solar corona and heliosphere, Springer.
[10] Alberti, T., et al. 2019, Entropy, 21, 320.
[11] Davidson, P. A. 2017, Introduction to magnetohydrodynamics.
[12] Parker, E. N. 1958, ApJ, 128, 664.
[13] Lemaire, J., & Scherer, M. 1971, J. Geophysical Research, 76, 7479.
[14] Maksimovic, M., Pierrard, V., & Lemaire, J. F. 1997, Astronomy and Astrophysics, 324, 725.
[15] Marsch, E. 2018, Annales Geophysicae, Copernicus GmbH.
[16] Chaudhary, K., Imam, A. M., Rizvi, S. Z. H., & Ali, J. 2018, Kinetic Theory; InTech: Rijeka, Croatia, 107.
[17] Verscharen, D., Klein, K. G., & Maruca, B. A. 2019, Living Reviews in Solar Physics, 16, 5.
[18] Ofman, L. 2010, Living Reviews in Solar Physics, 7, 1.
[19] Perrone, D., et al. 2013, Space Science Reviews, 178, 233.
[20] Servidio, S., et al. 2015, J. Plasma Physics, 81, 325810107.
[21] Tina, G., Gagliano, S., & Raiti, S. 2006, Solar energy, 80, 578.
[22] Hughes, R. S., Ph.D. thesis, University of Southern California 2017.
[23] Winske, D., et al. 2023, Space and Astrophysical Plasma Simulation: Methods, Algorithms, and Applications.
[24] Pekünlü, E. R., Çakırlı, Ö., & Özetken, E. 2001, MNRAS, 326, 675.
[25] Nasiri, S., Safari, H., & Sobouti, Y. 2007, Solar and Stellar Physics Through Eclipses.
[26] Safari, H., Nasiri, S., & Sobouti, Y. 2007, Astronomy & Astrophysics, 470, 1111.
[27] Kozlov, D. 2010, J. atmospheric and solar-terrestrial physics, 72, 1348.
[28] Salem, C. S., et al. 2012, ApJLetters, 745, L9.
[29] Podesta, J. J. 2013, Solar Physics, 286, 529.
[30] Esmaeili, S., Nasiri, M., Dadashi, N., & Safari, H. 2015, AAS/AGU Triennial EarthSun Summit, Vol. 1 of AAS/AGU riennial Earth-Sun Summit Publisher , p. 403.17.
[31] Bale, S., et al. 2016, Space science reviews, 204, 49.
[32] Kasper, J. C., et al. 2019, Nature, 576, 228.
[33] Huang, S., et al. 2020, ApJletters, 897, L3.
[34] Nakariakov, V. M., & Kolotkov, D. Y. 2020, Annual Review of Astronomy and Astrophysics, 58, 441.
[35] Ayaz, S., Li, G., & Khan, I. A. 2024, ApJ, 970, 140.
[36] Vasko, I., et al. 2024, ApJLetters, 967, L31.
[37] Arora, M., & Roe, P. L. 1997, J. Computational Physics, 130, 25.
[38] Yee, H. C. 1987, Upwind and symmetric shock-capturing schemes, National Aeronautics and Space Administration, Ames Research Center.
[39] Groth, C. P., De Zeeuw, D. L., Gombosi, T. I., & Powell, K. G. 2000, Journal of Geophysical Research: Space Physics, 105, 25053.
[40] Usmanov, A. V., Goldstein, M. L., & Matthaeus, W. H. 2014, The Astrophysical Journal, 788, 43.
[41] Guo, X., Zhou, Y., Wang, C., & Liu, Y. D. 2021, Earth and Planetary Physics, 5, 223.
[42] Varela, J., et al. 2022, Astronomy & Astrophysics, 659, A10.
[43] Baker, D. N., et al. 2013, J. Geophysical Research: Space Physics, 118, 45.
[44] van der Holst, B., et al. 2014, ApJ, 782, 81.
[45] Inc., P. S. MAS: Magnetohydrodynamic Algorithm outside a Sphere, https://www.predsci.com/mas/.
[46] Pomoell, J., & Poedts, S. 2018, J. Space Weather and Space Climate, 8, A35.
[47] Hinterreiter, J., et al. 2019, [arXiv:1907.07461].
[48] Li, Y., et al. 2025, [arXiv:2511.19975].
[49] Abbo, L., et al. 2016, Space Science Reviews, 201, 55.
[50] Dröge, W., Kartavykh, Y., Klecker, B., & Kovaltsov, G. 2010, ApJ, 709, 912.
[51] Horbury, T., Wicks, R., & Chen, C. 2012, Space Science Reviews, 172, 325.
[52] Dudík, J., et al. 2017, Solar Physics, 292, 1.
[53] Kulsrud, R. M. 2020, Plasma physics for astrophysics.
[54] Priest, E. 2014, Magnetohydrodynamics of the Sun, Cambridge University Press.
[55] Nordlund, Å. 2004, The Solar-B Mission and the Forefront of Solar Physics.
[56] Wang, C., et al. 2013, Science China Earth Sciences, 56, 1141.
[57] Wang, Z. 1994, Application of recently developed numerical technology to solar  hydrodynamics/magnetohydrodynamics processes, University of California, Los Angeles.
[58] Johnson, N. L., Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States) (unpublished).
[59] Vantieghem, S. 2011, Université Libre de Bruxelles.
[60] Zank, G., & Matthaeus, W. 1992, J. geophysical research, 97, 17189.
[61] Murawski, K., & Tanaka, T. 1997, Astrophysics and space science, 254, 187.
[62] Mejnertsen, L., et al. 2018, J. Geophysical Research: Space Physics, 123, 259.
[63] Wu, S., Andrews, M., & Plunkett, S. 2001, Space Science Reviews, 95, 191.
[64] Riley, P., et al. 2003, J. Geophysical Research: Space Physics, 108.
[65] Chen, P. 2011, Living Reviews in Solar Physics, 8, 1.
[66] Zhou, Y., Feng, X., & Zhao, X. 2014, J. Geophysical Research: Space Physics, 119, 9321.
[67] Lugaz, N., Temmer, M., Wang, Y., & Farrugia, C. J. 2017, Solar Physics, 292, 1.
[68] Hudson, M. K., et al. 2021, Space weather, 19, e2021SW002882.
[69] Shen, F., et al. 2022, Reviews of Modern Plasma Physics, 6, 8.
[70] Steinolfson, R. S., & Dryer, M. 1978, J. Geophysical Research: Space Physics, 83, 1576.
[71] Wu, C.-C., Chao, J., Wu, S., & Dryer, M. 1996, Solar Physics, 165, 377.
[72] Pushkar, E. 2009, Fluid Dynamics, 44, 917.
[73] Marsch, E. 2006, Advances in Space Research, 38, 921.
[74] Chapman, S. C., Hnat, B., & Kiyani, K. 2008, Nonlinear Processes in Geophysics, 15, 445.
[75] Rouillard, A. P., et al. 2021, Solar Physics and Solar Wind, 1.
[76] Odstrcil, D. 2023, Frontiers in Astronomy and Space Sciences, 10, 1226992.
[77] Rasca, A., Horányi, M., Oran, R., & van Der Holst, B. 2014, J. Geophysical Research: Space Physics, 119, 18.
[78] Ozturk, D., Ph.D. thesis, 2018.
[79] Zhou, H., & Tóth, G. 2020, J. Parallel and Distributed Computing, 139, 65.
[80] Kuzmin, D., Löhner, R., & Turek, S. 2012, Flux-corrected transport: principles, algorithms, and applications, Springer  Science & Business Media.
[81] da Silva, P. C., et al. 2024, Computational Geosciences, 1.
[82] Marsch, E. 2006, Living Reviews in Solar Physics, 3, 1.
[83] Kulsrud, R. M. 1983, Handbook of plasma physics, 1, 115.
[84] Chew, F. 1955, Eos, Transactions American Geophysical Union, 36, 963.
[85] Kulsrud, R. 1962, The Physics of Fluids, 5, 192.
[86] Chandran, B. D., Dennis, T. J., Quataert, E., & Bale, S. D. 2011, ApJ, 743, 197.
[87] Taran, S., Safari, H., & Daei, F. 2019, ApJ, 882, 157.
[88] Rudakov, L., Mithaiwala, M., Ganguli, G., & Crabtree, C. 2011, Physics of Plasmas, 18.
[89] Zong, Q. 2022, Annales geophysicae, Copernicus GmbH.
[90] Selzer, L. A., Ph.D. thesis, University of Warwick 2015.
[91] Schroeder, J. W. 2024, Alfvén Waves Across Heliophysics: Progress, Challenges, and Opportunities, 269.
[92] Majeski, S., & Kunz, M. W. 2024, J. Plasma Physics, 90, 535900101.
[93] Valentini, F., et al. 2009, Numerical Simulation Research Progress, New York: Nova Sci. Publ, 99.
[94] Bottino, A., & Sonnendrücker, E. 2015, J. Plasma Physics, 81, 435810501.
[95] Bailo, R., Carrillo, J. A., & Hu, J. 2024, [arXiv:2401.01689].
[96] Sahraoui, F., Belmont, G., & Goldstein, M. 2012, ApJ, 748, 100.
[97] Howes, G. 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373, 20140145.
[98] Huang, K., Ph.D. thesis, 2023.
[99] David, V., Ph.D. thesis, Université Paris-Saclay 2023.
[100] Yamada, M., Kulsrud, R., & Ji, H. 2010, Reviews of modern physics, 82, 603.
[101] Louarn, P., et al. 2015, Space Science Reviews, 187, 181.
[102] Pucci, F., et al. 2020, J. Plasma Physics, 86, 535860601.
[103] Izmodenov, V. V. 2018, Physics-Uspekhi, 61, 793.
[104] Korolkov, S., & Izmodenov, V. 2021, MNRAS, 504, 4589.
[105] Brandt, P., et al. 2023, Space science reviews, 219, 18.
[106] De Zeeuw, D. L., et al. 2000, IEEE Transactions on Plasma Science, 28, 1956.
[107] Goedbloed, J. P., Keppens, R., & Poedts, S. 2010, Advanced magnetohydrodynamics: with applications to laboratory  and astrophysical plasmas, Cambridge University Press.
[108] Evans, G., Blackledge, J., & Yardley, P. 2012, Numerical methods for partial differential equations, Springer Science &  Business Media.
[109] Hussaini, M. Y., & Zang, T. A., Technical report (unpublished).
[110] Tskhakaya, D., Matyash, K., Schneider, R., & Taccogna, F. 2007, Contributions to Plasma Physics, 47, 563.
[111] Plewa, T., et al. 2005, Adaptive mesh refinement, theory and applications, Springer.
[112] Crank, J., & Nicolson, P. 1996, Advances in Computational Mathematics, 6, 207.
[113] Cebeci, T. 2002, Convective heat transfer, Springer.
[114] Van der Holst, B., et al. 2011, ApJSupplement Series, 194, 23.
[115] Costa, J. T., Ph.D. thesis, Université Côte d’Azur 2016.
[116] Teukolsky, S. A. 2000, Phys. Rev. D, 61, 087501.
[117] Tran, Q., & Liu, J. 2016, [arXiv:1608.01344].
[118] Leiler, G., & Rezzolla, L. 2006, Phys. Rev. D, 73, 044001.
[119] Tóth, G., et al. 2005, J. Geophysical Research: Space Physics, 110.
[120] Giraldo, F. X. 2018, Time-integrators, Lecture notes.
[121] Feng, X., et al. 2010, ApJ, 723, 300.
[122] Coburn, J. T., et al. 2024, ApJ, 964, 100.
[123] Dyadechkin, S., Kallio, E., & Jarvinen, R. 2013, J. Geophysical Research: Space Physics, 118, 5157.
[124] Marsch, E., et al. 1982, J. Geophys. Res., 87, 35.
[125] Landi, E. 2008, ApJ, 685, 1270.
[126] Newbury, J., Russell, C., Phillips, J., & Gary, S. 1998, J. Geophysical Research: Space Physics, 103, 9553.