Effect of External Magnetic Field on Fuel Pellet Plasma Ignition Conditions in Magneto- Inertial Fusion

Document Type : Research Paper

Authors

1 Department of Physics, Faculty of Basic Sciences, University of Mazandaran, P.O. Box 47415-416, Babolsar, Iran

2 Department of Physics Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran

Abstract

Deuterium-helium-3 fuel is a suitable option for investigation in the magneto-inertial fusion cycle due to its non-neutron-producing nature and suitable reactivity rate at low temperatures. Due to the application of appropriate degenerate and temperature anisotropy conditions for the fuel pellet plasma environment, optimal fuel pellet ignition conditions will be provided. In this research, by calculating the production and loss powers for the plasma environment of the deuterium-helium-3 fuel pellet under the conditions of the degenerate environment and temperature anisotropy, the surface density optimal of the fuel pellet and the applied magnetic field have been estimated as ρR=100g.cm-2 and B=3.5×105T, respectively. The obtained results show that in the estimated optimal surface density conditions, applying a magnetic field reduces the temperature of electrons in the degenerate plasma by fifty percent of classical plasma state. This decrease in temperature and the creation of degenerate conditions leads to a decrease in the dissipated bremsstrahlung power of the plasma environment. Also, it is shown that the plasma temperature anisotropy in partial degenerate plasma conditions cause decreases 65 percent in the electron’s temperature of plasma. Furthermore, it is shown that under completely degeneracy conditions, temperature anisotropy will not play an effective role in the ignition conditions of the deuterium-helium-3 fuel pellet due to plasma degeneracy.

Keywords


[1] Nejadtaghi, F., Mahdavi, M., Hassanpour, S., Khanzadeh, H., & Tavassoli, A., 2024, Chine. J. Phys, 89, 1644.
[2] Ongena, J., & Van Oost, G., 2004, Fus. Sci. Tech, 45, 3.
[3] Mahdavi, M., Bakhtiyari, M., & Najafi, A., 2023, Inter. J. Modern. Phys, 37, 2350142.
[4] Khademloo, E., Mahdavi, M., & Khodadadi Azadboni, F., 2024, India. J. Phys, 98, 4543.
[5] Kemp, A. J., Basko, M., & Meyer-ter-Vehn, J., 2001, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 464, 192.
[6] Wurden, G. A., et al., 2016, J. Fus. Energy, 35, 69.
[7] Lindemuth, I. R., 2017, Phys. Pla, 24, 055602.
[8] Lindemuth, I. R., & Siemon, R. E., 2009, American. J. Phys, 77, 407.
[9] Mahdavi, M., Bakhtiyari, M., & Najafi, A., 2023, India. J. Phys, 97, 1277.
[10] Khodadadi Azadboni, F., 2022, Chine. J. Phys, 77, 2825.
[11] Huntington, C. M., et al., 2015, Nature. Phys, 11, 173.
[12] Mahdavi, M., & Khanzadeh, H., 2014, Phys. Plasma, 21, 062708.
[13] Mahdavi, M., & Khodadadi Azadboni, F., 2013, Phys. Plasma, 20, 122708.
[14] R. Jeet, R., Babu, S., & Kumar, A., 2021, Optik, 235, 166630.
[15] Davidson, C., Sheng, Z. M., Wilson, T., & McKenna, P., 2022, J. Plasma. Phys, 88, 905880206.
[16] Khanzadeh, H., & Mahdavi, M., 2017, Chine. J. Phys, 55, 1922.
[17] Liu, Z. Y., et al., 2021, Plasm. Phys. Con. Fus, 63, 125030.
[18] Khodadadi Azadboni, F., 2021, Chine. J. Phys, 71, 375.
[19] Mahdavi, M., & Khodadadi Azadboni, F., 2015, Phys. Plasma, 22, 032704.
[20] Yoon, P. H., Sarfraz, M., Ali, Z., Salem, C. S., & Seough, J., 2022, Monthly Notices of the Royal Astronomical Society, 509, 4736.
[21] Li, X., & Habbal, S. R., 2000, Journal of Geophysical Research: Space Physics, 105, 27377.
[22] Cattell, C., et al., 2022, Astro. J. Lett, 924, L33.
[23] Weibel, E. S., 1959, Phys. Rev. Lett, 2, 83.
[24] Khodadadi Azadboni, F., Mahdavi, M., & Khademloo, A., 2023, Iran. J. Phys. Res, 23, 147.
[25] Mahdavi, M., Gholami, A., & Ghodsi, O. N., 2020, Chine. J. Phys, 68, 596.
[26] Eliezer, S., Henis, Z., Nissim, N., Pinhasi, S. V., & Val, J. M. M., 2015, Laser. Particle Beams, 33, 577.
[27] Mahdavi, M., & Gholami, A., 2019, Fus. Eng. Des, 142, 33.