Numerical Study of Magnetoacoustic Wave Interaction with Null Points: Plasma Beta Modulation in Solar Atmospheres

Document Type : Research Paper

Authors

1 Department of Physics Education, P.O. Box 14665-889, Frahangian University, Tehran, Iran

2 Independant researcher, Tabriz, Iran

3 Physics Department, Payame Noor University, Tehran, 19395-3697, Iran

4 Physics Department, Payame Noor University, Tehran, 19395-3697

5 Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden

10.22128/ijaa.2025.2992.1216

Abstract

This investigation examines the interaction of magnetoacoustic pulses with a two-dimensional magnetic null point, explicitly accounting for variations in plasma β arising from spatial fluctuations in the magnetic field strength. The analysis employs the PLUTO code to solve the magnetohydrodynamic (MHD) equations, enabling a detailed exploration of nonlinear effects associated with plasma β modulation across distinct stratified layers. The results demonstrate temporal evolution in the system’s response, characterized by periodic fluctuations in amplitude and the emergence of pronounced peaks. These features indicate episodes of intensified coupling between the magnetoacoustic pulses and the magnetic topology. The observed variability in both amplitude and peak sharpness underscores the system’s inherent dynamism, with certain temporal phases exhibiting more vigorous interactions. Furthermore, the study reveals a correlation between plasma density alterations and radial velocity variations of the pulses, suggesting that these phenomena are closely tied to the redistribution of plasma β throughout the stratified magnetic environment.

Keywords


[1] Arregui, I., 2015, Philos. Trans. A Math. Phys. Eng. Sci., 373, 2.
[2] Petschek, H. E., 1964, NASA Spec. Publ., p. 425.
[3] Forbes, T. G., & Priest, E. R., 1987, Rev. Geophys., 25, 1583.
[4] Craig, I. J. D., & McClymont, A. N., 1991, Astrophys. J., 371, L41.
[5] McLaughlin, J. A., et al., 2009, A&A, 493, 227.
[6] Lee, E., Lukin, V. S., & Linton, M. G., 2014, A&A, 569, A94.
[7] Karimi, N., Alizadeh, M., & Shajei, Z., 2024, Iran. J. Astron. Astrophys., 11, 213.
[8] McLaughlin, J. A., Hood, A. W., & de Moortel, I., 2011, Space Sci. Rev., 158, 205.
[9] Kumar, P., et al., 2024, Nat. Commun., 15, 1.
[10] Priest, E., & Forbes, T., 2000, Magnetic Reconnection: MHD Theory and Applications, p. 612.
[11] Sabri, S., Ebadi, H., & Poedts, S., 2020, Astrophys. J., 902, 11.
[12] Goedbloed, J. P. H., & Poedts, S., 2004, Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas, Cambridge Univ. Press, p. i.
[13] Nakariakov, V., & Kolotkov, D., 2020, Annu. Rev. Astron. Astrophys., 58, 1.
[14] Mignone, A., et al., 2007, Astrophys. J. Suppl. Ser., 170, 228.
[15] Mignone, A., et al., 2011, Astrophys. J. Suppl. Ser., 198, 7.
[16] Karampelas, K., et al., 2023, Astrophys. J., 943, 131.
[17] Gruszecki, M., et al., 2011, A&A, 531, A63.
[18] Galsgaard, K., Priest, E., & Titov, V., 2003, J. Geophys. Res. Space Phys., 108, A1.
[19] Thurgood, J., & McLaughlin, J., 2013, A&A, 555, A86.
[20] McLaughlin, J. A., Hood, A. W., & de Moortel, I., 2011, Space Sci. Rev., 158, 205.