Statistical Analysis of Magnetic Patches in Solar Active Regions using the Complex Network Method

Document Type : Research Paper

Authors

1 Department of Physics, Faculty of Science, University of Zanjan, University Blvd., Zanjan, 45371-38791, Zanjan, Iran

2 Department of Geography, Faculty of Basic Sciences, Imam Ali Nazaja University, Postal Code: 1317893471, Tehran, Iran

3 Department of Physics, Faculty of Science, Imam Ali University, Postal Code: 1317893471, Tehran, Iran

4 Department of Physics, Faculty of Science, University of Zanjan, University Blvd., Postal Code 45371-38791, Zanjan, Iran

Abstract

Identifying solar active regions (ARs), which consist of one or more pairs of magnetic patches with opposite polarities, is essential due to their significant role in dynamic solar atmospheric phenomena such as solar flares and coronal mass ejections. In this study, we analyze ARs during their emergence and subsequent evolution on the solar surface using a novel complex network-based method known as Identifying Solar Magnetic Patches (ISMP). To examine the magnetic characteristics in detail, we selected a subregion of 125~$\times$~125 pixels centered on AR NOAA No., 1158, observed in 2011. Line-of-sight magnetogram data were obtained from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Our comprehensive statistical analysis reveals that the distributions of patch area, lifetime, and magnetic flux follow power-law behavior, with exponents approximately equal to $\alpha = 2.14$, 2.5, and 1.42, respectively. Furthermore, a calculated Hurst exponent of 0.57 indicates the presence of long-range temporal correlations in the emergence of new magnetic patches on the solar surface.

Keywords


[1] van Driel-Gesztelyi, L., & Green, L. M. 2015, Living Reviews in Sol. Phys., 12, 1.
[2] Sammis, I., Tang, F., & Zirin, H. 2000, ApJ, 540, 583.
[3] Priest, E., & Forbes, T. 2002, A&A Rev., 10, 313.
[4] Aschwanden, M. 2006, Physics of the solar corona: an introduction with problems and solutions, Springer Science & Business Media.
[5] Falconer, D., Moore, R., & Gary, G. 2008, ApJ, 689, 1433.
[6] Mason, J. P., & Hoeksema, J. 2010, ApJ, 723, 634.
[7] Georgoulis, M. K., Tziotziou, K., & Raouafi, N.-E. 2012, ApJ, 759, 1.
[8] Abramenko, V. 2015, Geomagnetism and Aeronomy, 55, 860.
[9] Barnes, G., et al. 2016, ApJ, 829, 89.
[10] Raboonik, A., Safari, H., Alipour, N., & Wheatland, M. S. 2016, ApJ, 834, 11.
[11] Daei, F., Safari, H., & Dadashi, N. 2017, ApJ, 845, 36.
[12] Hagenaar, H. J., Schrijver, C. J., & Title, A. M. 2003, ApJ, 584, 1107.
[13] Abramenko, V., & Longcope, D. 2005, ApJ, 619, 1160.
[
14] Gošić, M., et al. 2016, ApJ, 820, 35.
[15] Schrijver, C. J. e. a. 1997, ApJ, 487, 424.
[16] Meunier, N. 2003, A&A, 405, 1107.
[17] Wang, Y., & Zhang, J. 2008, ApJ, 680, 1516.
[18] Parnell, C., et al. 2009, ApJ, 698, 75.
[19] Javaherian, M., Safari, H., Amiri, A., & Alipour, N. 2017, Sol. Phys., 292, 164.
[20] Zhang, Y., & Zhang, M. 2022, ResearchGate Preprint.
[21] Chen, Y., et al. 2024, A&A.
[22] Scherrer, P. H., et al. 2012, Sol. Phys., 275, 207.
[23] Schou, J., et al. 2012, Sol. Phys., 275, 229.
[24] Pesnell, W. D., Thompson, B. J., & Chamberlin, P. 2011, The solar dynamics observatory.
[25] DeRosa, M., & Slater, G. 2013, Lockheed Martin Solar & Astrophysics Laboratory, Palo Alto, CA.
[26] Bone, N. 2007, Aurora: observing and recording nature’s spectacular light show, Springer Science & Business Media
[27] Pesnell, W. D., Thompson, B. J., & Chamberlin, P. 2011, The Solar Dynamics Observatory.
[28] Tajik, Z., Farhang, N., Safari, H., & Wheatland, M. S. 2024, ApJS, 273, 1.
[29] Farhang, N., Safari, H., & Wheatland, M. S. 2018, ApJ, 859, 41.
[30] Kaki, B., Farhang, N., & Safari, H. 2022, Scientific Reports, 12, 16835.
[31] Alipour, N., et al. 2022, A&A, 663, A128.
[32] Alipour, N., & Safari, H. 2015, ApJ, 807, 175.
[33] Rad, S. H., Alipour, N., & Safari, H. 2021, ApJ, 906, 59.
[34] Lu, E. T., & Hamilton, R. J. 1991, ApJ, Part 2-Letters (ISSN 0004-637X), vol. 380, Oct. 20, 1991, p. L89-L92., 380, L89.
[35] Aschwanden, M. 2011, Self-organized criticality in astrophysics: The statistics of nonlinear processes in the universe, Springer Science & Business Media.
[36] Bak, P., Tang, C., & Wiesenfeld, K. 1987, Phys. Rev. Lett., 59, 381.
[37] Charbonneau, P., McIntosh, S. W., Liu, H.-L., & Bogdan, T. J. 2001, Sol. Phys., 203, 321.
[38] Tajik, Z., et al. 2023, Advances in Space Research.