Thermal measurement induced disturbance in the Bose-Hubbard Hamiltonian


1 Quchan University of Technology, Quchan, Iran

2 Department of Physics, Ferdowsi University of Mashhad, 91775-1436, Mashhad, Iran


We study measurement induced disturbance (MID) in a qutrit –qutrit system with considering the effect of the external magnetic field, nonlinear and linear coupling constants and temperature. We show that all of these parameters have effective roles in MID. We also investigate the effect of finite external magnetic fields direction as parallel and anti-parallel on MID, and find some interesting results.


[1] Gmez, J., Peimbert, A., Echevarra, J.: Optical quantum entanglement in astrophysics. Revista mexicana de astronoma y astrofsica, 45, 179-189 (2009).
[2] Pitknen, M.: Magnetospheric consciousness (2018).
[3] Giaccari, S., Modesto, L., Rachwa, L., Zhu, Y.: Finite entanglement entropy of black holes. The European Physical Journal C, 78, 459 (2018).
[4] Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
[5] Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A , 77, 022301 (2008).
[6] Jaghouri, H., Nazifkar, S., Jafarzadeh, H., Javidan, K.: Thermal quantum correlation and entanglement in the BoseHubbard Hamiltonian. Quantum Information Processing, 17, 284 (2018).
[7] Jaghouri, H., Sarbishaei, M., Javidan, K.: Thermal entanglement and lower bound of the geometric discord for a two-qutrit system with linear coupling and nonuniform external magnetic field. Quantum Inf Process. 16, 124 (2017)
[8] Zou, H. M., Fang, M. F.: Discord and entanglement in non-Markovian environments at finite temperatures. Chin. Phys. B 25, 090302 (2016)
[9] You-Neng, G., Mao-Fa, F., Xiang, L., Bai-Yuan, Y.: Dynamics of quantum discord in a two-qubit system under classical noise. Chin. Phys. B 23, 034204 (2014)
[10] Werlang, T., Souza, S., Fanchini, F. F., Boas, C. V.: Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)
[11] Jaghouri, H., Sarbishaei, M., Javidan, K.: Evolution of entropy in different types of non-Markovian three-level systems: Single reservoir vs. two independent reservoirs. Pramana, 86, 997 (2016)
[12] Guo, Y. N., Fang, M. F., Wang, G. Y., Zeng, K.: Distillability sudden death and sudden birth in a two-qutrit system under decoherence at finite temperature. Quantum Inform. Process. 15, 2851 (2016)
[13] Jiang, H., Mao-Fa, F., Bai-Yuan, Y., Xiang, L.: Distillability sudden death in a two qutrit systems under a thermal reservoir. Chin. Phys. B 21, 084205 (2012)
[14] Caves, C. M., Milburn, G. J.: Qutrit entanglement. Optics communications, 179, 439 (2000)
[15] Xiao, X., Li, Y. L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D. 67 204 (2013)
[16] Yan, X. Q., Liu, G. H., Chee, J.: Sudden change in quantum discord accompanying the transition from bound to free entanglement. Phys. Rev. A 87, 022340 (2013)
[17] Yuan, Y. L., Hou, X. W.: Thermal geometric discords in a two-qutrit system. Int. J. of Quantum Inform. 14, 1650016 (2016)
[18] Hou, X. W., Lei, X. F., Chen, B.: Thermal quantum and classical correlations in a two-qutrit system. Eur. Phys. J. D 67, 1 (2013)
[19] Greiner M., Mandel O., Esslinger T., Hnsch TW., Bloch I.: Quantum phase transition from a superuid to a Mott insulator in a gas of ultracold atoms. Nature, London 415 (2002)
[20] Zhang, G. F., Li, S. S.: The effects of nonlinear couplings and external magnetic field on the thermal entanglement in a two-spin-qutrit system. Opt. Commun. 260, 347 (2006)
[21] Zhang, G. F., Li, S. S., Liang, J. Q.: Thermal entanglement in Spin-1 biparticle system. Opt. Commun. 245, 457 (2005)
[22] Yip, S. K.: Dimer state of spin-1 bosons in an optical lattice. Phys. Rev. Lett. 90 250402 (2003)