[1] Gmez, J., Peimbert, A., Echevarra, J.: Optical quantum entanglement in astrophysics. Revista mexicana de astronoma y astrofsica, 45, 179-189 (2009).
[2] Pitknen, M.: Magnetospheric consciousness (2018).
[3] Giaccari, S., Modesto, L., Rachwa, L., Zhu, Y.: Finite entanglement entropy of black holes. The European Physical Journal C, 78, 459 (2018).
[4] Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
[5] Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A , 77, 022301 (2008).
[6] Jaghouri, H., Nazifkar, S., Jafarzadeh, H., Javidan, K.: Thermal quantum correlation and entanglement in the BoseHubbard Hamiltonian. Quantum Information Processing, 17, 284 (2018).
[7] Jaghouri, H., Sarbishaei, M., Javidan, K.: Thermal entanglement and lower bound of the geometric discord for a two-qutrit system with linear coupling and nonuniform external magnetic field. Quantum Inf Process. 16, 124 (2017)
[8] Zou, H. M., Fang, M. F.: Discord and entanglement in non-Markovian environments at finite temperatures. Chin. Phys. B 25, 090302 (2016)
[9] You-Neng, G., Mao-Fa, F., Xiang, L., Bai-Yuan, Y.: Dynamics of quantum discord in a two-qubit system under classical noise. Chin. Phys. B 23, 034204 (2014)
[10] Werlang, T., Souza, S., Fanchini, F. F., Boas, C. V.: Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)
[11] Jaghouri, H., Sarbishaei, M., Javidan, K.: Evolution of entropy in different types of non-Markovian three-level systems: Single reservoir vs. two independent reservoirs. Pramana, 86, 997 (2016)
[12] Guo, Y. N., Fang, M. F., Wang, G. Y., Zeng, K.: Distillability sudden death and sudden birth in a two-qutrit system under decoherence at finite temperature. Quantum Inform. Process. 15, 2851 (2016)
[13] Jiang, H., Mao-Fa, F., Bai-Yuan, Y., Xiang, L.: Distillability sudden death in a two qutrit systems under a thermal reservoir. Chin. Phys. B 21, 084205 (2012)
[14] Caves, C. M., Milburn, G. J.: Qutrit entanglement. Optics communications, 179, 439 (2000)
[15] Xiao, X., Li, Y. L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D. 67 204 (2013)
[16] Yan, X. Q., Liu, G. H., Chee, J.: Sudden change in quantum discord accompanying the transition from bound to free entanglement. Phys. Rev. A 87, 022340 (2013)
[17] Yuan, Y. L., Hou, X. W.: Thermal geometric discords in a two-qutrit system. Int. J. of Quantum Inform. 14, 1650016 (2016)
[18] Hou, X. W., Lei, X. F., Chen, B.: Thermal quantum and classical correlations in a two-qutrit system. Eur. Phys. J. D 67, 1 (2013)
[19] Greiner M., Mandel O., Esslinger T., Hnsch TW., Bloch I.: Quantum phase transition from a superuid to a Mott insulator in a gas of ultracold atoms. Nature, London 415 (2002)
[20] Zhang, G. F., Li, S. S.: The effects of nonlinear couplings and external magnetic field on the thermal entanglement in a two-spin-qutrit system. Opt. Commun. 260, 347 (2006)
[21] Zhang, G. F., Li, S. S., Liang, J. Q.: Thermal entanglement in Spin-1 biparticle system. Opt. Commun. 245, 457 (2005)
[22] Yip, S. K.: Dimer state of spin-1 bosons in an optical lattice. Phys. Rev. Lett. 90 250402 (2003)