Introducing Stable Real Non-Topological Solitary Wave Solutions in 1+1 Dimensions

Authors

1 Physics Department, Persian Gulf University, Bushehr 75169, Iran.

2 Jahrom University, Jahrom 74135-111, Iran

Abstract

By adding a proper term to the Lagrangian density of a real non-linear KG system with a proposed non-topological unstable solitary wave solution, its stability guaranteed appreciably. This additional term in the new modified Lagrangian density behaves like a strong internal force which stands against any arbitrary small deformation in the proposed non-topological solitary wave solution.

Keywords


[1] R. Rajaraman, Solitons and Instantons (North Holland, Elsevier, Amsterdam, 1982).

[2] A. Das, Integrable Models (World Scientific, 1989).

[3] G. L. Lamb, Jr., Elements of Soliton Theory (John Wiley and Sons, USA, 1980).

[4] P. G. Drazin and R. S. Johnson, Solitons: an Introduction (Cambridge University Press, 1989).

[5] D. K. Campbell and M. Peyrard, Phys. D 19, 165 (1986).

[6] D. K. Campbell and M. Peyrard, Phys. D 18, 47 (1986).

[7] D. K. Campbell, J. S. Schonfeld, and C. A. Wingate, Physica D 9, 1 (1983).

[8] M. Peyrard and D. K. Campbell (1983), Physica D 9, 33 (1983).

[9] R. H. Goodman and R. Haberman, Siam J. Appl. Dyn. Syst. 4, 1195 (2005).

[10] S. Hoseinmardi and N. Riazi, Int. J. Mod. Phys. A 25, 3261 (2010).

[11] V. A. Gani and A. E. Kudryavtsev, Phys. Rev. E 60, 3305 (1999).

[12] C. A. Popov, Wave Motion 42, 309 (2006)

[13] M. Peyravi, A. Montakhab, N. Riazi, and A. Gharaati, Eur. Phys. J. B 72, 269 (2009).

[14] A. R. Gharaati, N. Riazi and F. Mohebbi, Int. J. Theor. Phys. 45, 57 (2006).

[15] M. Mohammadi, N. Riazi, Prog. Theor. Exp. Phys, 023A03 (2014).

[16] M. Mohammadi, N. Riazi, Progress of Theoretical Physics, 126, 237 (2011).

[17] M. Mohammadi, N. Riazi, and A. Azizi, Prog. Theor. Phys. 128, 615 (2012).

[18] G. A. Omelyanov, Electron. J. Di_. Equ. 2010, No 150, (2010).

[19] M. Mohammadi, N. Riazi, Prog. Theor. Exp. Phys, 023A03 (2014).

[20] T.D. Lee and G.C. Wick, Phys. Rev. D9 2291 (1974).

[21] R. Friedberg, T. D. Lee and A. Sirlin Phys. 13, 2739 (1976).

[22] R. Friedberg and T.D. Lee, Phys. Rev. D15 1694 (1977).

[23] J. Werle. Physics Letters. 71B, 368 (1977).

[24] Werle, J.: Acta Phys. Pol. B12, 601 (1981).

[25] S. Coleman, Nucl. Phys. B 262(2) 263-283 (1985).

[26] T.D. Lee and Y. Pang, Phys. Rep. 221(5) 251-350 (1992).

[27] N. Riazi, Int. J. Theor. Phys.50, 3451 (2011).

[28] A. M. Wazwaz, Chaos, Solitons and Fractals, 28, 1005 (2006).

[29] A. M. Wazwaz, Appl. Math. Comput, 154, 713 (2004).

[30] G. H. Derrick, Journal of Mathematical Physics, 5, 1252 (1964).