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Abstract. By adding a proper term to the Lagrangian density of a real non-linear
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1 Introduction

The Real non-linear KG systems in 1 + 1 dimensions with kink (anti-kink) bearing solutions
were studied for decades [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Kink
(anti-kink) solutions are topological objects. Topological characteristics are the main reason
for their stability. Mathematically, a solitary wave solution is stable if its rest energy would
be a minimum among other solutions which are close to the solitary wave solution. In other
words, for a stable solitary wave solution, any small permissible deformation leads to an
increase in the rest energy. However, the non-topological solutions are more interesting since
without any consideration, just by adding them together when they are far enough from each
other, it leads to a solution again, i.e. many particle-like solution can be constructed easily.
Many efforts have been made to find non-topological relativistic Klein Gordon solitary wave
solutions among which one can mention the complex non-linear KG systems which yield the
non-topological solitary wave-packet solutions [20, 21, 22, 23, 24, 25, 26, 27], and Wazwaz’s
works, but none of them are stable objects (like kink solutions) as solitons mathematically
[28, 29].

In this paper, we restrict ourselves to the real relativistic non-linear Klein-Gordon field
systems in 1+1 dimensions with non-topological solitary wave solutions. Our main goal is to
show how adding a new proper self interaction term to the Lagrangian density of a real non-
linear KG system with an unstable non-topological solitary wave solution turns the solution
to a stable one so that the related known KG-like equation of motion stays unchanged. This
additional term behaves like a strong internal force which stands against any arbitrary small
deformations on the solitary wave solution. In this new model, all equations and relations
for the non-topological stable solution are exactly the same as original ones of the real KG
system. Morover, there is a constant A, which larger values of it lead to stronger stability.
The original idea for introducing this new model is started from Derrick’s paper and its
suggestion for finding a stable solitary wave solution from a real non-linear scalar filed in
3 + 1 dimensions [30], although this work is essentially different.
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The organization of this paper is as follows: In the next section, we will introduce a
special non-linear real KG system with a non-topological Gaussian solitary wave solution.
We will use it in section III as a good simple example to show numerically how adding
a proper term to the original Lagrangian density leads to stability of the non-topological
solitary wave solution. The last section is devoted to summary and conclusions.

2 real non-topological Gaussian solitary wave solutions

The real non-linear KG systems in 1 + 1 dimensions can be generally introduced by a
Lagrangian density in the following form:

L = ∂µϕ∂
µϕ− U(ϕ) = ϕ̇2 − ϕ′2 − U(ϕ), (1)

where prime and dot represent space and time derivatives, respectively. ϕ is a real scalar
field and U(ϕ) is called potential. The equation of motion corresponding to this Lagrangian
density reads

ϕ̈− ϕ′′ + 1

2

dU

dϕ
= 0. (2)

In the whole paper, we take the speed of light equal to one (c = 1). The energy-momentum
tensor corresponding to the Lagrangian density (1) can be calculated using the Noethers
theorem:

Tµν = 2∂µφ∂νφ− ηµνL, (3)

where ηµν is the Minkowski metric tensor. Also, the related energy density has the following
form:

T 00 = ε(x, t) = ϕ̇2 + ϕ′2 + U(ϕ) (4)

If the potential U(ϕ) has at least two degenerate vacua (i.e. minimum points of poten-
tial), there will be localized solutions called kinks and anti-kinks with positive and negative
topological charges, respectively.

In the soliton paradigm, it is common firstly to choose a potential and then, search for
the possible solitary wave solutions at the second step. In this paper, we will do the reverse,
i.e. instead of finding solitary wave solutions from a known potential U(ϕ), we are going to
find a potential U(ϕ) leading to a type of the proposed solitary wave solutions. For example,
the proposed relativistic solitary wave solution can be a localized function in the following
form:

ϕ(x, t) = exp (−γ2(x− vt)2), (5)

in which γ = 1/
√

1− v2 and v is the velocity (Fig. 1). Using the equation of motion (2), it
is easy to prove that the right potential U(ϕ) which leads to the proposed solution (5) is

U(φ) = −4ϕ2 ln(ϕ), (6)

that is plotted in Fig. 2. This potential for ϕ > e−1/2 is continuously decreasing and for
ϕ > 1 takes negative values. Therefore, without violating the conservation of energy, the
effect of any small perturbation, leads ϕ to increase infinitely, i.e. the proposed solution
(5) is not essentially stable and spontaneously blows up (see Fig. 3). We examined a lot
of different non-topological functions instead of exp function (5) to find a proper potential
U(ϕ), but for all of them, we could not find a proper one. It is easy to show that generally
for the real non-linear KG systems, the stable non-topological and non-vibrational solitary
wave (soliton-like) solution does not exist at all.
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Figure 1: Localized wave function (5) at different velocities and t = 0 is shown. For the
other relativistic localized solitary wave solutions, the same results would be obtained. Note
that, their widths decrease according to Lorentz contraction.

Figure 2: Plot of potential U = −4ϕ2 ln(ϕ) versus ϕ.

Generally, a non-vibrational solitary wave solution is represented by

ϕ(x, t) = f(x̃) = f(γ(x− vt)), (7)

where x̃ = γ(x − vt) and f(x̃) can be any arbitrary well defined continuous finite function
including topological and non-topological functions. For such solutions (7), the equation of
motion (2) reduces to

d2ϕ

dx̃2
=

1

2

dU

dϕ
. (8)

If we multiply it by dϕ
dx̃ and integrate, it turns to

−∂µϕ∂µϕ =

(
dϕ

dx̃

)2

= U(ϕ) + C = U(ϕ), (9)
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Figure 3: The non-topological and non-vibrational solutions of the real non-linear KG system
are essentially unstable. This is a moving unstable solitary wave solution (5) which moves
initially at 0.5c speed.

in which C is the integration constant and we have to take it zero to have a solitary wave
solution with finite rest energy. It was shown that generally if the potential U(ϕ) has n
degenerate minimum or vacuum points (i.e. the special fields for which the potential U(ϕ)
and its first derivative dU

dϕ , all are zero), there are 2(n− 1) types of the topological solutions

which called kinks and anti-kinks [1].

In general, to have a non-topological non-vibrational solitary wave solution with a lo-
calized function f(x̃) for which f(±∞) = 0, according to Eq. (9), there must be just a
single vacuum point at ϕ = 0. Note that, as we said before, the existence of more than
one successive vacuum points leads to kink (antikink) solutions. However, for any non-
topological localized solitary wave solution such as (5), the field function ϕ(x̃) changes from
zero at x̃ = ±∞ to a maximum value ϕm at x̃ = 0 for which dϕ

dx̃ (x̃ = 0) = 0. Hence,
according to Eq. (9), ϕm is the maximum value of the non-topological solution for which
U(ϕm) = 0, but dU

dϕ |ϕm
is not zero anymore. In other words, the field potentials U(ϕ) which

lead to non-topological non-vibrational solitary wave solutions must be positive in the inter-
val 0 ≤ ϕ ≤ ϕm, but their curves pass from ϕm to negative regions such as what we can see
in the Fig. 2. Therefore, it is not possible to have a relativistic Klein-Gordon system with
a stable non-topological non-vibrational solitary wave solution at all.
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3 New extended nonlinear KG system with stable non-
topological solitary wave solution

In the real word, stable fundamental particles exist like localized energy density lumps in
the space. They can move with any arbitrary velocity. On the other hand, many of the
fundamental equations which are used in the quantum field theory to consider the behavior
of fundamental particles are KG-like or something like the nonlinear KG (nKG) models.
Namely, the Dirac equation for electrons and positrons and non-linear φ4 theory for Higgs
particles are good examples which confirm this idea. Classically, we would like to consider
particles as some stable solutions of the non-linear relativistic equations which are called
solitary wave solutions or solitons. Stability is the main condition for a solitary wave solution
to be soliton. Moreover, comparing with dynamical equation in standard quantum field
theory since any KG (or nKG)-like equation was used just for a special type of fundamental
particle (spin-0 particles), we would like the standard classical nonlinear KG-like dynamical
equation (2) just to be satisfied for a special type of solitary wave solution (like the proposed
solution 5).

All these demands of being united in a classical non-linear relativistic model with non-
topological soliton solutions is a very hard and complicated request. However, one can
overcome this problem via introducing an idea which can be called internal force, i.e. the
force which makes strong restrictions on the structure of a solitary wave solution and makes it
to be a stable solitary wave solution or soliton. In fact, we would like to find an extended nKG
Lagrangian density with an additional self-interaction term which finally for a special solitary
wave solution (SSWS) (5), shrinks to the same original dynamical nonlinear KG equation (2).
Moreover, we want this new additional term to behave like an internal force which restricts
the proposed solitary wave solution to be a stable solution. In fact, mathematically, the
new extended nKG Lagrangian density is a completely different system which has different
solutions, but for one of these solutions, all new relations and equations completely shrink
to the same original nKG system. Moreover, we will show that for all arbitrary permissible
small deformations (variations) for this special solution, the total energy always increases
i.e. it is also a stable solution.

Now, to clarify how a new extended nKG system can leads to a stable solitary wave
solution, we specially focus on the pervious nKG system (1) with the unstable solitary wave
solution (5). At the first step, we are going to add a proper self interaction term to the
original Lagrangian density (1) for which the same original solitary wave solution (5) would
be a solution as well and just for this proposed solution (5), the dynamical equation shrinks
to the same original one (2). However, the extended lagrangian density may be introduced
in the following form:

LN = ∂µϕ∂
µϕ− U(ϕ) +AK3, (10)

in which A is an arbitrary constant for dimensional reasons and K is a functional scalar:

K = ∂µϕ∂
µϕ+ U(ϕ), (11)

which is inspired by equation (9). It is easy to show that for the proposed solitary wave
solution (5), K is equal to zero. The new equation of motion is

ϕ̈− ϕ′′ + 1

2

dU

dϕ
+

[
3AK ∂K

∂xµ
∂K

∂(∂µϕ)

]
+

[
3

2
AK2 ∂

∂xµ

(
∂K

∂(∂µϕ)

)]
−
[

3

2
AK2 ∂K

∂ϕ

]
= 0.

(12)

Again, it is easy to see that the proposed solitary wave solution (5) satisfies this complicated
equation automatically. In fact, the three additional terms in equation (12) which are
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categorized in [· · · ]’s and contain K or K2, all are equal to zero for the proposed function
(5). Therefore, for the special solution (5), the new complicated equation of motion (12)
reduces to the same original one (2) as we desired. Now, the new energy density function is

ε(x, t) =
[
ϕ̇2 + ϕ′2 + U(ϕ)

]
+
[
6Aϕ̇2K2 −AK3

]
= εo + ε1, (13)

which is divided into two distinct parts εo and ε1. It is easy to see that for the proposed
solution (5), the additional term ε1 is equal to zero; then, the related energy density function
and total rest energy (E0) for the SSWS (5) remain unchanged.

This new extended nKG system (10) is too complicated to consider its stability via
numerical simulations. To show that the stability of the solitary wave solution, we need
to introduce a new criterion. In fact, each dynamical equation specifies the permissible
ways which a system can be evolved related to different initial conditions. For example,
for the pervious dynamical nKG equation (2) and its unstable solitary wave solution (5),
according to Fig. 3, we can see many permissible deformations at different times. Therefore,
for any dynamical equation with a special solitary wave solution, the possible deformations
are not arbitrary or random. If for a solitary wave solution, the possible permissible small
deformations (do not) need external energies, it is a stable (unstable) object which is called
a soliton solution. For an unstable solitary wave solution, it can evolve to new deformations
with no need to increase in total energy and hence can be occur spontaneously (as we see in
Fig. 3). However, for many complicated systems, like one which we introduced in this paper
(10), we are not hopeful analytically or numerically to study permissible deformations and
argue about stability of their solutions. Therefore, to be sure that a solitary wave solution
of a complicated system studied under all permissible deformations (which for the new
extended nKG system are impossible or complicated to recognized), we study all possible
arbitrary small deformations (either permissible or impermissible). If one can show that
for all arbitrary small deformations, the related total energy always increase, we can be
sure that all permissible deformations would be considered automatically and therefore, the
solitary wave solution would be a stable one, i.e. the new criterion is satisfied.

Now, let us to concentrate specially on the second part of the energy density ε1:

ε1(x, t) = AK2(6ϕ̇2 −K). (14)

The main reason for the stability of the proposed solitary wave solution (5) is related to this
relation. Since the new extended nKG model is completely relativistic and covariant, if a
solution is stable in one reference frame, it would be stable in any other frames. It is easy to
show that for any arbitrary (permissible or impermissible) small deformation with respect
to an inertial frame which sees the solitary wave solution (5) moves at speeds near to the
speed of light, ε1(x, t) is always positive and increases strongly for large values of coefficient
A. To prove this result in general, an arbitrary small variation of the field function of a
moving solitary wave solution is introduced in the following form:

ϕ(x, t) = ϕv(x, t) + δϕ(x, t). (15)

in which ϕv(x, t) = exp (−γ2(x− vt)2) is the moving solitary wave solution (5), and δϕ(x, t)
(small deformations) can be any non-trivial arbitrary small function of space-time. Note
that, a trivial small deformation is related to change of speed v to a smaller value v−δv (i.e.
another solution with a smaller speed ϕ(x, t) = ϕv−δv(x, t) ≈ ϕv(x, t) − δv ∂ϕv

∂v ) for which
the second part of the energy density, i.e. ε1, remains zero and the total energy decreases.
If we insert a non-trivial deformed solitary wave function (15) into K and keep the terms
with the same order of δϕ, it yields

K = Kv + δK = δK ≈
[
2ϕ̇v(δϕ̇)− 2ϕ′v(δϕ

′) + δϕ
dU(ϕv)

dϕv

]
, (16)
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where Kv =
[
(ϕ̇v)

2 − (ϕ′v)
2 + U(ϕv)

]
is written for the moving undeformed solitary wave

solution (5) which essentially is zero. Now, we can calculate the second part of the energy
density for the deformed solitary wave (15):

ε1(x, t) = δε1 = A(Kv + δK)2[6(ϕ̇v + δϕ̇)2 − (Kv + δK)]−AK2
v[6ϕ̇

2
v −Kv]

≈ 6A(δK)2(ϕ̇v)
2 > 0, (17)

which is always positive definite for all possible small (permissible or impermissible) de-
formations. Since for a moving solitary wave solution that moves at a speed near to the
speed of light, ϕ̇v at different space-times takes nonzero remarkable values; therefore we can
approximate (ϕ̇v + δϕ̇)2 to (ϕ̇v)

2. If we consider a non-moving solitary wave solution, i.e.
v = 0, the related time derivatives is zero (ϕ̇0 = 0) and then δε1 ≈ −A(δK)3 which is not
positive definite anymore! Since δε1 is a function of cube of (δK) with a unknown sing, for
this case (v = 0), we can not say it is a positive or negative definite function. However, as
we said before, since all inertial frames are equivalent, we can consider the small deforma-
tions for a special frame which see the SSWS (7) moves with a non-zero speed and non-zero
remarkable values of ϕ̇v in such a way that one can approximates (ϕ̇v + δϕ̇)2 to (ϕ̇v)

2.
Unlike ε1, the first part of the energy density (εo) and total energy, may be decreasing

under some arbitrary small variations of ϕ. But, we will show that this small decreasing
behaviour, for large values of A, would be unimportant physically and can be ignored in
the stability considerations. To prove this result in general, let us insert a deformed solitary
wave function like (15) into εo(x, t) and keep the terms with the same order of δϕ, then it
yields

εo(x, t) = εos(x̃)+δεo(x, t) ≈
[
(ϕ̇v)

2 + (ϕ′v)
2 + U(ϕv)

]
+

[
2ϕ̇v(δϕ̇) + 2ϕ′v(δϕ

′) + δϕ
dU(ϕv)

dϕv

]
,

(18)
where εos(x̃) = εos(γ(x − vt)) is the energy density of a moving undeformed SSWS (5).
Using large value of the coefficient A, the comparison between δεo and δε1 needs more
consideration. Note that δεo is of order δϕ and may take positive or negative values for
arbitrary deformations. Instead, since δK is of order (δϕ), δε1 is of order A(δϕ)2. For
example, consider A ∼ 1040; therefore, the order of magnitude of variations for which the
solitary wave solution (5) is not mathematically a stable object, are less than 10−20 which
physically so small that can be discarded in the stability considerations. These variations |δϕ|
are small enough for which |δϕ| < δϕ or |δεo| < A(δε1)2. Therefore, for such small variations,
the total energy E may be reduced with very small amounts equal to the integration of δεo
over all of the space which again is a very small unimportant value. Hence, physically if we
consider large enough value for constant A, the stability of the solitary solution (5) would be
effectively increased. In fact, this so small decreasing behaviour related to this fact that for
a non-deformed (or for a very small deformed) SSWS (5), the dominant equation of motion
is the shrunk version of the equation of motion (12) which is the same original nKG equation
(2).

For example, let us consider an arbitrary deformation for a moving solitary wave solution
with velocity v = 0.5 in the following form:

ϕ(x, t) = (1 + ξ) exp(−γ2(x− vt)2), (19)

in which δϕ = ξ exp(−γ2(x−vt)2) and ξ is just a small parameter. If we plot the total energy
E versus ξ, the output result is shown in Fig. 4. As we can see in Fig. 4, for A ∼ 105, 106,
E(ξ = 0) = Ev = 2.894405018233 = Eoγ is not a minimum, but by increasing A, this
behavior disappears slowly i.e. E(ξ = 0), when we consider large values of A, according to
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Figure 4: Variations of the total energy E versus small ξ for different A’s. We have considered
a moving solitary wave solution with 0.5c speed which deformed according to relation (19)

Fig. 4, it is apparently a minimum. If we zoom on the case A = 108 around the ξ = 0, the
output result can be see in the Fig. 5. As we see in Fig. 5, for smaller |ξ|, E(ξ = 0) is not
really a minimum of the case A = 108. Again, by increasing A, this behavior disappears
slowly i.e. we can always find a very small range for the coefficients ξ around ξ = 0, which
E(ξ = 0) is not a minimum. This range for larger A is apparently smaller. Therefore,
mathematically, by using the new criterion, the special solitary wave solution (5) is not
really a stable object, but physically, if we consider extremely large values of A, this is a
very small shift from E(ξ = 0) = Ev which is completely unimportant and the stability
of the solitary wave-packet solutions is enhanced appreciably. Therefore, to a very good
approximation, we can consider the single solitary wave packet solution as a stable object.

For more support, let us consider the variation of total energy for the following arbitrary
one parameter deformations of the moving SSWS (5) at t = 0 and v = 0.5:

ϕ(x, t) = (1 + ξt) exp(−γ2(x− vt)2), (20)

ϕ(x, t) = exp(−(γ2 + ξxt)(x− vt)2), (21)

and

ϕ(x, t) = exp(−γ2(x− vt)2)(1 +
ξ

(x− vt)2 + 4
), (22)

where ξ is just a small parameter. If we plot the total energy E versus ξ, the output results
are shown in Figs. 6-8 respectively. It confirms that again how large values of A leads to
more stability of the SSWS (5).

A special impermissible deformation for the moving solitary wave solution of the new
extended Lagrangian density (10) can be introduced from ones which appear in Fig. 3 as
permissible deformations of the original Lagrangian-density (1). According to Fig. 3, for
time interval 0 < t < 8, the shape of the Gaussian solitary wave solutions does not change
remarkably. In fact, it changes so small which can not be seen in Fig. 3. If we calculate
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Figure 5: Variations of the total energy E versus small ξ (in compared with Fig. 4) for
different A’s. We have considered a moving solitary wave solution with 0.5c speed which
deformed according to relation (19).

Figure 6: Variations of the total energy E versus small ξ for different A’s at t = 0. We have
considered a moving solitary wave solution with 0.5c speed which is deformed according to
relation (20).

the total energy of the small disturbed proposed solitary wave solution (5) at different times
0 < t < 8 (according to Fig. 3) for the original Lagrangian system (1), and plot it versus
time, the output is the expected horizontal dash-red line in Fig. 9, i.e. it remains unchanged
for all times and is equal to total energy (Ev) of the moving undeformed solitary wave
solution (5). Now, for the small deformed profiles which appear in Fig. 3 and for time
interval 0 < t < 8, let us consider the new energy density (13) to calculate the total energy.
Note that, the deformed profiles in Fig. 3 are not solutions of the new extended nonlinear KG
system (10), therefore; they are impermissible deformations for the new system. However, for
different A’s, the new output blue curves in Fig. 9 would be resulted for such impermissible
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Figure 7: Variations of the total energy E versus small ξ for different A’s at t = 0. We have
considered a moving solitary wave solution with 0.5c speed which is deformed according to
relation (21).

Figure 8: Variations of the total energy E versus small ξ for different A’s at t = 0. We have
considered a moving solitary wave solution with 0.5c speed which is deformed according to
relation (22).

deformations as we expect. It again, confirms that for arbitrary small deformations of the
solitary wave solution (5), the larger values of A lead to greater increase in the total energy
i.e. they lead to more stability.

Briefly, since it is not possible to recognize all permissable deformations of a special
solitary wave solution, we study the behaviour of its total energy for all arbitrary (imper-
missible or permissible) deformations. If just for one of these arbitrary deformations, there
was a decreasing behaviour, the certainty about the stability is completely destroyed. Fortu-
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nately, it was shown that theoretically, for large values of A, it is not possible to find a small
arbitrary variation which appreciably leads to a decreasing behaviour in the total energy
(c.f. Eq. (17)). Note that the stability for a non-moving SSWS (5), for which ϕ̇o = 0, is
somewhat complicated. Accordingly, in this paper, since relativistically there is no essential
difference between a moving and non-moving solitary wave solution, we specially used a
moving solitary wave solution with v = 0.5 to consider stability.

Figure 9: The total energy E versus time for all profiles which were shown in Fig. 3. The
red dash-line is related to the original system (1), and the blue curves are related to our new
model (10) for different A’s.

It may be possible to consider some variations for which K = 0 and ε1 = 0. These
possible variations impose a constraint on ϕ and its derivatives in the following form:

ϕ̇2 = ϕ′2 − U(ϕ). (23)

If we substitute ϕ̇2 from (23) in the energy density function (13), it shrinks to

ε(x, t) = 2ϕ′2, (24)

i.e. it leads the elimination of the potential term U(ϕ) in the energy density function and
we are not worried about the existence of any continuously decreasing potential anymore.
Therefore, for these special variations, we have just one positive definite term in the first
part of the energy density function (εo) which again is the confirmation of the stability of
the non-topological solitary wave solutions (7) while K = 0.

In general, since the SSWS (5) is a non-topological object, we can construct any arbitrary
multi lumps solution just by adding SSWS’s (5) together at different velocities, provided
that they are far enough from each other. Figure 10 shows properly how adding many single
solitary wave solutions together leads to distinct energy density lumps as many as distinct
particle like objects. It confirms that the new A-dependent terms of the new system (10)
for any number of the distinct solitary wave solutions (5) are approximately zero.

One may think that this strange and complicated system is not a physical case. For
example, the new equation of motion (12) has some complicated terms which have not seen
in other known physical relativistic (classical or quantum mechanical) field systems. But
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Figure 10: The field (i.e. the red curve) and the energy density (i.e. the blue curve)
representations of a three lumps solution at different velocities for the case A = 1016. These
figures are exactly the same as those which can be obtained for the case A = 0.

note that this complicated equation (12), for the proposed solitary wave solution (5), is
reduced to the original known non-linear KG-like version (2). In other words, if one asks
about the equation of motion of a free stable solitary wave solution (5), our answer is the
same original equation (2). The K dependent terms in the new equation of motion (12) will
be important just when a SSWS (5) enters to a collision process (which is not considered
as a free particle). In fact, we showed how a nKG-like equation (2), without the slightest
change, can remain unchanged just for a special type of solutions (5) so that their stability
are guaranteed automatically. Note that, for the new extended system (10), there are other
solutions, but all of them have energies larger than the proposed solitary wave solution (5)
(except the solutions which are very close to the vacuum state).

From quantum field theory point of view, any known KG (or non-linear KG)- like equa-
tion is applied to a special type of known real particles (for example φ4 theory is applied just
for Higss particles), hence classically, in this paper we showed that how a nKG-like equation
(2) can be applied just for a special type of non-topological stable particle-like solutions (5)
among the other possible solutions of the complicated equation (12). Moreover, quantum
mechanically, we do not allowed to speak about what really happens to the particle during
a collision processes, in fact, we just allowed to speak about the before and after collisions
when the particle is free and its related equation of motion is the same known KG (or
nKG)-like equations. Classically, for this extended model (10), we showed that when stable
particles (5) are free, the dominant equation of motion is the same nKG-like equation (2),
but when they enter to a collision process, the new complicated equation of motion (12),
without any change, must be considered as the right equation of motion. In fact, this new
extended model is a mathematical effort to show that it may be possible to consider funda-
mental particles as non-topological localized stable solitary wave solutions with dominant
KG (or nKG)-like equations. Moreover, it was introduced specially in 1 + 1 dimensions, but
it can be similarly generalized to 3 + 1 dimensions and other systems. The free parameter
A which appears in this model is an indicator constant for the power of the stability of the
solitary wave solution.
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4 Summery and conclusion

For a real nonlinear relativistic Klein-Gordon field system with an unstable solitary wave
solution in 1+1 dimensions, adding a proper term to the original Lagrangian density, one can
build a new extended real non-linear KG (nKG) system with the same original solitary wave
solution the stability of which is guaranteed appreciably. In fact, this new additional term
behaves like a strong internal force which suppresses the proposed solitary wave solutions
to stay in the same original shape. This additional term for the solitary wave solution is
always zero and therefore, the dominant dynamical equation shrinks to the same original
nKG system exactly like a real fundamental particle.
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