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Abstract. We investigate the growth of matter density perturbations as well as the
generalized second law (GSL) of thermodynamics in the framework of f(R)-gravity. We
consider a spatially flat FRW universe filled with the pressureless matter and radiation
which is enclosed by the dynamical apparent horizon with the Hawking temperature.
For some viable f(R) models containing the Starobinsky, Hu-Sawicki, Exponential,
Tsujikawa and AB models, we first explore numerically the evolution of some cosmo-
logical parameters like the Hubble parameter, the Ricci scalar, the deceleration param-
eter, the density parameters and the equation of state parameters. Then, we examine
the validity of GSL and obtain the growth factor of structure formation. We find that
for the aforementioned models, the GSL is satisfied from the early times to the present
epoch. But in the farther future, the GSL for all models is violated. Our numerical
results also show that for all models, the growth factor for larger structures, like the
ΛCDM model, fit the data very well.
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1 Introduction

The observed accelerated expansion of the universe, as evidenced by a host of cosmological
data such as supernovae Ia (SNeIa) [1], cosmic microwave background (CMB) [2, 4], large
scale structure (LSS) [5], came as a great surprise to cosmologists. The present accelerated
phase of the universe expansion reveals new physics missing from our universe’s picture,
and it constitutes the fundamental key to understand the fate of the universe. There are
two representative approaches to explain the current acceleration of the universe. One
is to introduce “dark energy” (DE) [8] in the framework of general relativity (GR). The
other is to consider a theory of modified gravity (MG), such as f(R) gravity, in which
the Einstein-Hilbert action in GR is generalized from the Ricci scalar R to an arbitrary
function of the Ricci scalar [12]. Here, we will focus on the later approach. In [15], it was
shown that a f(R) model with negative and positive powers of Ricci curvature scalar R can
naturally combine the inflation at early times and the cosmic acceleration at late times. It
is actually possible for viable f(R) models for late time acceleration to include inflation by
adding R2 term. Therefore, it is natural to consider combined f(R) models which describe
both primordial and present DE using one f(R) function, albeit one containing two greatly
different characteristic energy scales [16, 17]. In [19], it was pointed out that the f(R)-gravity
can also serve as dark matter (DM). In [20, 23], a set of f(R)-gravity models corresponding
to different DE models were reconstructed. Although a great variety of f(R) models have
been proposed in the literature, most of them is not perfect enough. A viable f(R) model
should simultaneously satisfy stringent solar-system bounds on deviations from GR as well
as accelerate the expansion at late times.
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In order to distinguish between DE and MG, it is crucial to measure the growth of
structure in addition to the expansion history. This is because any given expansion his-
tory predicted by a MG model could be emulated by a smooth DE component. Measuring
the matter velocity field at the locations of the galaxies via spectroscopy helps differenti-
ate between the effect of DE and MG as the source of the accelerating universe through
measurements of Redshift Space Distortions (RSD) [25]. RSD was identified by the recent
“Rocky III” report as among the most powerful ways of addressing whether the acceleration
is caused by DE or MG [26]. For the case of DE model, the growth index is independent of
the size of structure, as the structure formation equation for the scales larger than the Jeans
length is independent of the wavenumbers while in the MG model, the effective gravitational
constant relates the growth index of the structure to its size [27, 28, 29, 30]. An interesting
feature of the f(R) theories is the fact that the gravitational constant in f(R)-gravity, varies
with length scale as well as with time. Thus, the evolution of the matter density perturba-
tion, δm ≡ δρm/ρm, in this theory is affected by the effective Newton coupling constant, Geff ,
and it is scale dependent, too. Therefore, the matter density perturbation is a crucial tool to
distinguish MG from DE model in GR, in particular the standard ΛCDM model. The scale
dependencies of the linear growth rate of metric and density perturbations in f(R)-gravity
can change predictions for cosmological power spectra in the linear regime [31].

On the other hand, the connection between gravity and thermodynamics is one of sur-
prising features of gravity which was first reinforced by Jacobson [32], who associated the
Einstein field equations with the Clausius relation in the context of black hole thermody-
namics. This idea was also extended to the cosmological context and it was shown that the
Friedmann equations in the Einstein gravity [33] can be written in the form of the first law
of thermodynamics (the Clausius relation). The equivalence between the first law of thermo-
dynamics and the Friedmann equation was also found for f(R)-gravity [34]. Besides the first
law, the generalized second law (GSL) of gravitational thermodynamics, which states that
entropy of the fluid inside the horizon plus the geometric entropy do not decrease with time,
was also investigated in f(R)-gravity [36]. The GSL of thermodynamics in the accelerating
universe driven by DE or MG has been also studied extensively in the literature [37]-[58].

All these motivate us to investigate the growth of matter density perturbations in a
class of metric f(R) models and see scale dependence of growth factor. Additionally, we
are interested in examining the validity of GSL in some viable f(R)-gravity models. The
structure of this paper is as follows. In Sec. 2, within the framework of f(R)-gravity
we consider a spatially flat Friedmann-Robertson-Walker (FRW) universe filled with the
pressureless matter and radiation. In Sec. 3, we study the growth rate of matter density
perturbations in f(R)-gravity. In Sec. 4, the GSL of thermodynamics on the dynamical
apparent horizon with the Hawking temperature is explained. In Sec. 5, the cosmological
evolution of f(R) models is illustrated. In Sec. 6, the viability conditions for f(R) models
are discussed. In addition, some viable f(R) models containing the Starobinsky, Hu-Sawicki,
Exponential, Tsujikawa and AB models are introduced. In Sec. 7, we give numerical results
obtained for the evolution of some cosmological parameters, the GSL and the growth of
structure formation in the aforementioned f(R) models. Finally, Sec. 8 is devoted to
conclusions.
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2 f(R)-gravity framework

Within the framework of f(R)-gravity, the modified Einstein-Hilbert action in the Jordan
frame is given by [12]

SJ =

∫ √
−g d4x

[
f(R)

16πG
+ Lmatter

]
, (1)

where G, g, R and Lmatter are the gravitational constant, the determinant of the metric gµν ,
the Ricci scalar and the lagrangian density of the matter inside the universe, respectively.
Also, f(R) is an arbitrary function of the Ricci scalar.

Varying the action (1) with respect to gµν yields

FGµν = 8πGT (m)
µν − 1

2
gµν(RF − f) +∇µ∇νF − gµν□F. (2)

Here, F = df/dR, Gµν = Rµν − 1
2Rgµν and T

(m)
µν is the energy-momentum tensor of the

matter. The gravitational field equations (2) can be rewritten in the standard form as
[59, 61]

Gµν = 8πG
(
T (m)
µν + T (D)

µν

)
, (3)

with

8πGT (D)
µν = (1− F )Gµν − 1

2
gµν(RF − f) +∇µ∇νF − gµν□F. (4)

For a spatially flat FRW metric, taking T
µ(m)
ν = diag(−ρ, p, p, p) in the prefect fluid

form, then the set of field equations (3) reduce to the modified Friedmann equations in the
framework of f(R)-gravity as [62]

3H2 = 8πG(ρ+ ρD), (5)

2Ḣ = −8πG(ρ+ ρD + p+ pD), (6)

where

8πGρD =
1

2

(
RF − f

)
− 3HḞ + 3H2

(
1− F

)
, (7)

8πGpD =

[
−1

2

(
RF − f

)
+ F̈ + 2HḞ − (1− F )

(
2Ḣ + 3H2

)]
, (8)

with

R = 6(Ḣ + 2H2). (9)

Here, H = ȧ/a is the Hubble parameter. Also, ρD and pD are the curvature contribution to
the energy density and pressure which can play the role of DE. Also, ρ = ρBM + ρDM + ρrad
and p = prad = ρrad/3 are the energy density and pressure of the matter inside the universe,
consist of the pressureless baryonic and dark matters as well as the radiation. On the whole
of the paper, the dot and the subscript R denote the derivatives with respect to the cosmic
time t and the Ricci scalar R, respectively.

The energy conservation laws are still given by

ρ̇m + 3Hρm = 0, (10)

ρ̇rad + 4Hρrad = 0, (11)

ρ̇D + 3H(ρD + pD) = 0, (12)
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where ρm = ρBM + ρDM. From Eqs. (10) and (11) one can find

ρ =
ρm0

a3
+

ρrad0

a4
, (13)

where ρm0 = ρBM0 + ρDM0 and ρrad0 are the present values of the energy densities of matter
and radiation. We also choose a0 = 1 for the recent value of the scale factor.

Using the usual definitions of the density parameters

Ωm =
ρm
ρc

=
8πGρm0

3H2a3
, Ωrad =

ρrad
ρc

=
8πGρrad0

3H2a4
, ΩD =

ρD
ρc

=
8πGρD
3H2

, (14)

in which ρc = 3H2/(8πG) is the critical energy density, the modified Friedmann equation
(5) takes the form

1 = Ωm +Ωrad +ΩD. (15)

From the energy conservation (12), the equation of state (EoS) parameter due to the cur-
vature contribution is defined as

ωD =
pD
ρD

= −1− ρ̇D
3HρD

. (16)

Using the modified Friedmann equations (5) and (6), the effective EoS parameter is obtained
as

ωeff =
p+ pD
ρ+ ρD

= −1− 2Ḣ

3H2
. (17)

Also, the two important observational cosmographic parameters called the deceleration q
and the jerk j parameters, respectively related to ä and

...
a , are given by [64]

q = − ä

aH2
= −1− Ḣ

H2
= 1− R

6H2
, (18)

j =

...
a

aH3
= 1− Ḣ

H2
+

Ṙ

6H3
= 2 + q +

Ṙ

6H3
. (19)

Cosmologists believe that the universe transitioned from deceleration to acceleration in
a cosmic jerk. The deceleration to acceleration transition of the universe occurs for different
models with a positive value of the jerk parameter and negative value of the deceleration
parameter [67]. For example, flat ΛCDM models have a constant jerk j = 1 [70].

3 Growth rate of matter density perturbations

Here, we study the growth rate of matter density perturbations in f(R)-gravity. The origin
of structure formation in the universe is seeded by the small quantum fluctuations gener-
ated at the inflationary epoch. These small perturbations over time grew to become all of
the structure we observe. Once the universe becomes matter dominated, primeval density
inhomogeneities (δρm/ρm ∼ 10−5 ) are amplified by gravity and grow into the structure we
see today [71].

The evolution of the matter density contrast δm = δρm/ρm provides an important tool
to distinguish f(R)-gravity and generally MG models from DE inside GR and, in particular,
from the ΛCDM model. We consider the linear scalar perturbations around a flat FRW
background in the Newtonian (longitudinal) gauge as

ds2 = −(1 + 2Ψ)dt2 + a2(t)(1 + 2Φ)dx2, (20)
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with two scalar potentials Ψ and Φ describing the perturbations in the metric. In this
gauge, the matter density perturbation δm and the perturbation of δF (R) obey the following
equations in the Fourier space [72, 73]

δ̈m +

(
2H +

Ḟ

2F

)
δ̇m − 8πGρm

2F
δm =

1

2F

[(
−6H2 +

k2

a2

)
δF + 3H ˙δF + 3 ¨δF

]
, (21)

¨δF + 3H ˙δF +

(
k2

a2
+

F

3FR
− R

3

)
δF =

8πG

3
ρmδm + Ḟ δ̇m, (22)

where k is the comoving wave number. For the modes deep inside the Hubble radius
(k2/a2 ≫ H2), with considering this fact that the time derivative of F is small (|Ḟ | ≪ HF )
and with neglecting the oscillating mode of δF ( ¨δF ≪ H ˙δF ≪ H2), the evolution of matter
density contrast δm is govern by [74, 75, 77]

δ̈m + 2Hδ̇m − 4πGeffρmδm = 0, (23)

where

Geff =
G

F

[
4

3
− 1

3

M2a2

k2 +M2a2

]
, (24)

and M2 = F
3FR

. The fraction of effective gravitational constant to the Newtonian one, i.e.
Geff/G, is defined as screened mass function in the literature [29]. Equation (24) obviously
shows that the screened mass function is the time and scale dependent parameter.

With the help of new variable namely g(a) = δm/a which parameterizes the growth of
structure in the matter, Eq. (23) becomes

d2g

d ln a2
+

(
4 +

Ḣ

H2

)
dg

d ln a
+

(
3 +

Ḣ

H2
− 4πGeffρm

H2

)
g = 0. (25)

In general, there is no analytical solution to this equation. But in [79] for an asymptotic
form of viable f(R) models at high curvature regime given by f(R) = R + R−n where
n > −1, an analytic solution for density perturbations in the matter component during the
matter dominated stage was obtained in terms of hypergeometric functions. In what follows,
we solve the differential equation (25), numerically. To this aim, the natural choice for the
initial conditions are g(am) = 1 and dg

d ln a |a=am= 0, where am = 1/(1+ zm) should be taken
during the matter era, because for the matter dominated universe, i.e. H2 = 8πGρm/3
and Geff/G = 1, the solution of Eq. (23) yields δm = a. The other useful quantity is the
logarithmic rate of change of matter density with respect to the scale factor, known as the
growth factor. The growth factor is defined as [80]

f(z) =
d ln δm
d ln a

= −(1 + z)
d ln δm
dz

, (26)

which is an observational parameter. The redshift space distortion is used as a probe to
measure the growth rate of the structures, f(z), to underpin the expansion history of the
universe and to distinguish between MG and DE theories [30]. In the present work, we
obtain the evolution of linear perturbations relevant to the matter spectrum for the scales;
k = 0.1, 0.01, 0.001 h Mpc−1, where h corresponds to the Hubble parameter today. For
smaller scales, k > 0.2 h Mpc−1, the effect of non-linearity becomes important. In the
non-linear regime, while gravity is still in the weak field limit, density fluctuations are no
longer small and in addition, the density or potential fields may couple to additional scalar
fields introduced in MG theories. The non-linear regime is therefore the hardest to describe
in any general way as the nature of the coupling to scalar fields is theory specific [82].
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4 Generalized second law of thermodynamics

Here, we are interested in examining the validity of the GSL of gravitational thermodynamics
for a given f(R) model. According to the GSL, entropy of the matter inside the horizon
beside the entropy associated with the surface of horizon should not decrease during the
time [33]. As demonstrated by Bekenstein, this law is satisfied by black holes in contact
with their radiation [83]. The entropy of the matter containing the pressureless matter and
radiation inside the horizon is given by the Gibbs’ equation [37]

TAdS = dE + pdV, (27)

where E = (ρm + ρrad)V , V = 4π
3 r̃3A is the volume containing the matter with the radius

of the dynamical apparent horizon r̃A = (H2 + K
a2 )

−1/2 and TA = 1
2πr̃A

(
1 − ˙̃rA

2Hr̃A

)
is the

Hawking temperature. Here, p = prad = ρrad/3 is the total pressure of the matter inside
the universe, consist of the pressureless baryonic and dark matters as well as the radiation.
Taking time derivative of Eq. (27) and using the energy equations (10)-(11) as well as the
Friedmann equations (5)-(6) for a spatially flat FRW universe (K = 0), one can find

TAṠ =
r̃2A
2G

(
˙̃rA −Hr̃A

)(
−2Ḣ +H

d

dt
− d2

dt2

)
F. (28)

The horizon entropy in f(R)-gravity is given by SA = AF
4G [84], where A = 4πr̃2A is the area

of the apparent horizon. Taking the time derivative of SA, one can get the evolution of
horizon entropy as

TAṠA =
1

4GH

(
2Hr̃A − ˙̃rA

)(2 ˙̃rA
r̃A

+
d

dt

)
F. (29)

Now, we can calculate the GSL due to different contributions of the matter and horizon.
Adding Eqs. (28) and (29), one can get the GSL in f(R)-gravity as [36]

TAṠtot =
1

4GH4

[
2Ḣ2F − ḢHḞ + 2(Ḣ +H2)F̈

]
, (30)

where Stot = S+SA. Note that Eq. (30) shows that the validity of the GSL, i.e. TAṠtot ≥ 0
depends on the f(R)-gravity model. For the Einstein gravity (F = 1), one can immediately
find that the GSL (30) reduces to

TAṠtot =
Ḣ2

2GH4
≥ 0, (31)

which shows that the GSL is always fulfilled throughout history of the universe. Within
the framework of Einstein’s gravity, it was also shown that the GSL in the presence of DE
is always satisfied during history of the universe [37]. The GSL of thermodynamics is a
universal principle governing the universe. As is well known, the GSL is a powerful tool
to set bounds on astrophysical and cosmological models [86]. The satisfaction of the GSL
of thermodynamics provides further confidence on the thermodynamical interpretation of
gravity in f(R) scenario based on the profound connection between gravity and thermody-
namics. Therefore, as one of the most important theoretical touchstones to examine whether
f(R)-gravity can be an alternative gravitational theory to GR, we examine the validity of
the GSL for some viable f(R) models in subsequent sections.
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5 Cosmological evolution

Here, we recast the differential equations governing the evolution of the universe in dimen-
sionless form which is more suitable for numerical integration. To do so, following [91] we
use the dimensionless quantities

t̄ = H0t, H̄ =
H

H0
, R̄ =

R

H2
0

, (32)

f̄ =
f

H2
0

, F̄ = F, F̄R =
FR

H−2
0

, F̄RR =
FRR

H−4
0

, (33)

where H0 is the Hubble parameter today. With the help of the above definitions and using

d

dt̄
= −H̄(1 + z)

d

dz
, (34)

one can rewrite the modified Friedmann equation (5) as follows

H̄2 = Ωm0

[
(1+z)3+χ(1+z)4

]
+(F̄−1)

[
H̄2−(1+z)H̄H̄ ′]− 1

6

(
f̄−R̄

)
+(1+z)H̄2F̄RR̄

′, (35)

where χ = ρrad0/ρm0 = Ωrad0/Ωm0 and prime ‘′’ denotes a derivative with respect to the
cosmological redshift z = 1

a − 1.
To solve Eq. (35), we introduce new variables as [92]:

yH :=
ρD
ρm0

=
H̄2

Ωm0

− (1 + z)3 − χ(1 + z)4, (36)

and

yR :=
R̄

Ωm0

− 3(1 + z)3. (37)

Taking the derivative of both sides of Eqs. (36) and (37) with respect to redshift z yield

−(1 + z)y′H =
1

3
yR − 4yH, (38)

−(1 + z)y′R = 9(1 + z)3 − 1

H̄2F̄R

{
yH +

1

6Ωm0

(f̄ − R̄)

−(F̄ − 1)

[
yR
6

− yH − 1

2

(
(1 + z)3 + 2χ(1 + z)4

)]}
. (39)

Finally, inserting Eq. (39) into the derivative of Eq. (38) gives a second differential equation
governing yH(z) as [93]

(1 + z)2y′′H + J1(1 + z)y′H + J2yH + J3 = 0, (40)

where

J1 = −3−
(

1− F̄

6H̄2F̄R

)
, (41)

J2 =
2− F̄

3H̄2F̄R
, (42)
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J3 = −3(1 + z)3 − 1

6H̄2F̄R

[
(1− F̄ )

(
(1 + z)3 + 2χ(1 + z)4

)
+

1

3Ωm0

(R̄− f̄)

]
. (43)

Equation (40) cannot be solved analytically. Hence, we need to solve it numerically. To do
so, we use the two initial conditions yH(zi) = 3 and y′H(zi) = 0 which come from the ΛCDM
approximation of f(R) model in high curvature regime. Notice zi is the proper redshift in
which we have RFR(zi) ≤ 10−13.

With the help of Eqs. (14), (16), (17) and (36), one can obtain the evolutionary behaviors
of the matter density parameter, Ωm(z), DE density parameter, ΩD(z), EoS parameter of
DE, ωD(z), and effective EoS parameter, ωeff(z), in terms of yH and its derivatives as follows

Ωm(z) =
(1 + z)3

yH + (1 + z)3 + χ(1 + z)4
, (44)

ΩD(z) =
yH

yH + (1 + z)3 + χ(1 + z)4
, (45)

ωD(z) = −1 +
1 + z

3

(
y′H
yH

)
, (46)

ωeff(z) = −1 +
(1 + z)

3

[
y′H + 3(1 + z)2 + 4χ(1 + z)3

yH + (1 + z)3 + χ(1 + z)4

]
. (47)

Also from Eqs. (18), (19) and (36) one can get the evolutions of the deceleration and jerk
parameters as

q(z) = −1 +
(1 + z)

2

[
y′H + 3(1 + z)2 + 4χ(1 + z)3

yH + (1 + z)3 + χ(1 + z)4

]
, (48)

j(z) = 1 +
(1 + z)

2

[
(1 + z)y′′H − 2y′H + 4χ(1 + z)3

yH + (1 + z)3 + χ(1 + z)4

]
. (49)

6 Viable f(R)-gravity models

The necessary conditions for having a viable f(R) model can be summarized as follows:

(i) F > 0, which keeps the positivity of the effective gravitational coupling constant and
avoids anti-gravity.

(ii) FR > 0, which gives the stability condition of cosmological perturbations [31, 96, 97].

(iii) In the large curvature regime (R/R0 ≫ 1), the f(R) model behaves like ΛCDM model.
It means that f(R) → R − 2Λ, where R0 is the Ricci scalar today. This is required for the
presence of the matter-dominated stage.

(iv) A stable late time de Sitter point; the condition which is required for this stability is,
0 < m(R = Rd) < 1 [98], where m ≡ RFR

F and Rd = 2f(Rd)/F (Rd) is the value of the scalar
curvature at the de Sitter point. Note that the quantity m characterizes the deviation from
the ΛCDM model.

(v) Passing constraint from the equivalence principle and solar system test [99].

Since we are intersected in investigating the growth of structure formation and examin-
ing the GSL in f(R)-gravity, hence in what follows we consider some viable f(R) models
including the Starobinsky, Hu-Sawicki, Exponential, Tsujikawa and AB models which satisfy
the conditions (i) to (v).
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6.1 Starobinsky Model

The Starobinsky f(R) model is as follows [74]

f(R) = R+ λRs

[(
1 +

R2

R2
s

)−n

− 1

]
, (50)

where n > 0, λ and Rs are constant parameters of the model. Following [100], we take n = 2
and λ = 1. Note that in the high z regime (z ≃ zi), we have R/Rs ≫ 1. This yields the
f(R) model (50) to behave like the ΛCDM model, i.e. f(R) = R − 2Λ. Consequently, the
constant parameter Rs is obtained as Rs = 18Ωm0H

2
0/λ.

6.2 Hu-Sawicki Model

This model was reconstructed based on the local observational data and presented by Hu
and Sawicki [92] as

f(R) = R−
c1Rs

(
R
Rs

c2

)n(
R
Rs

)n
+ 1

, (51)

where n > 0, c1, c2 and Rs are constants of the model. For this model, we take n = 4,
c1 = 1.25× 10−3, c2 = 6.56× 10−5 [91], and obtain Rs = 18c2Ωm0H

2
0/c1.

6.3 Exponential Model

This model is defined by the following function [93],

f(R) = R− βRs

(
1− e−

R
Rs

)
, (52)

where β and Rs are two constants of the model. Here, Rs corresponds to the characteristic
curvature modification scale. Here, we take β = 1.8 [93] and obtain Rs = 18Ωm0

H2
0/β.

6.4 Tsujikawa Model

This model was originally presented in [73] as

f(R) = R− λRs tanh

(
R

Rs

)
, (53)

where λ and Rs are the model parameters. For this model, we obtain Rs = 18Ωm0H
2
0/λ and

set λ = 1 [101].

6.5 AB Model

This model was proposed by Appleby and Battye [16, 103] as

f(R) =
R

2
+

ϵ

2
log

[
cosh

(
R
ϵ − b

)
cosh(b)

]
, (54)

where b is a dimensionless constant and ϵ = Rs/
[
b+ log(2 cosh b)

]
. The constant Rs can be

obtained at high curvature regime when the AB f(R) model (54) behaves like the ΛCDM
model, i.e. f(R) = R− 2Λ. This gives

Rs =
−36 Ωm0H

2
0

[
b+ log(2 cosh b)

]
log
(
1−tanh b

2

) .
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Here, we also set b = 1.4.

7 Numerical results

Here to solve Eq. (40) numerically, we choose the cosmological parameters Ωm0 = 0.24,
ΩD0 = 0.76 and Ωrad0 = 4.1× 10−5. As we have already mentioned, we use the two suitable
initial conditions yH(zi) = 3 and y′H(zi) = 0, in which zi is obtained where RFR → 10−13.
For the Starobinsky, Hu-Sawicki, Exponential, Tsujikawa and AB f(R) models, we obtain
zi =15.61, 13.12, 3.66, 3.52 and 3.00, respectively.

In addition, to study the growth rate of matter density perturbations, we numerically
solve Eq. (25) with the initial conditions g(zm) = 1 and (dg/d ln a)|zm = 0, in which zm is
obtained where Ωm(zm) = 1. For the aforementioned models, we obtain zm =14, 13, 12, 14
and 14.36, respectively.

With the help of numerical results obtained for yH(z) in Eq. (40), we can obtain the
evolutionary behaviors of H, R, q, Ωm, ΩD, ωeff , ωD and GSL for our selected f(R) models.
The results for the Starobinsky, Hu-Sawicki, Exponential, Tsujikawa and AB f(R) models
are displayed in Figs. 1-5. Figures show that: (i) the Hubble parameter and the Ricci scalar
decrease during history of the universe. (ii) The deceleration parameter q varies from an early
matter-dominant epoch (q = 0.5) to the de Sitter era (q = −1) in the future, as expected.
It also shows a transition from a cosmic deceleration q > 0 to the acceleration q < 0 in the
near past. The current values of the deceleration parameter for the Starobinsky, Hu-Sawicki,
Exponential, Tsujikawa and AB f(R) models are obtained as q0 = −0.56, −0.60, −0.56,
−0.57 and −0.60, respectively. These are in good agreement with the recent observational
constraint q0 = −0.43+0.13

−0.17 (68% CL) obtained by the cosmography [105]. (iii) The density
parameters ΩD and Ωm increases and decreases, respectively, as z decreases. (iv) The
effective EoS parameter, ωeff , for the all models, starts from an early matter-dominated
regime (i.e. ωeff = 0) and in the late time, z → −1, it behaves like the ΛCDM model,
ωeff → −1. (v) The EoS parameter of DE, ωD, for the all models starts at the phase of
a cosmological constant, i.e. ωD = −1, and evolves from the phantom phase, ωD < −1,
to the non-phantom (quintessence) phase, ωD > −1. The crossing of the phantom divide
line ωD = −1 occurs in the near past as well as farther future. At late times (z → −1),
ωD approaches again to −1 like the ΛCDM model. Moreover, the present values of ωD for
the Starobinsky, Hu-Sawicki, Exponential, Tsujikawa and AB f(R) models are obtained as
ωD0 = −0.94, −0.98, −0.93, −0.94 and −0.97, respectively. These values satisfy the present
observational constraints [2, 4].

(vi) The variation of the GSL shows that it holds for the aforementioned models from
early times to the present epoch. But in the farther future, the GSL for the Starobinsky, Hu-
Sawicki, Exponential, Tsujikawa and AB f(R) models is violated for −0.996 < z < −0.955,
−0.935 < z < −0.909, −0.897 < z < −0.751, −0.997 < z < −0.958 and −0.995 < z <
−0.950, respectively. To investigate this problem in ample detail, using Eq. (17) we rewrite
Eq. (30) in terms of ωeff as

TAṠtot =
1

4G

[
9

2
(1 + ωeff)

2F +
3

2
(1 + ωeff)

Ḟ

H
− (1 + 3ωeff)

F̈

H2

]
, (55)

which shows that in the farther future z → −1 when ωeff → −1 (see Figs. 1-5), we have

TAṠtot ≃
F̈

2GH2
. (56)
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According to Eq. (56), the validity of GSL, i.e. TAṠtot ≥ 0, depends on the sign of F̈ . In
Figs. 1-5, we plot the variation of F̈ /(2H2) versus z in the farther future for the selected
f(R) models. Figures confirm that when the sign of F̈ changes from positive to negative due
to the dominance of DE over non-relativistic matter then the GSL is violated. As we know
that the natural tendency of any system is to evolve toward thermodynamic equilibrium
which is characterized by a state of maximum entropy. In the context of an ever expanding
FRW universe, this translates in that the entropy of the apparent horizon plus that of
matter and fields enclosed by it must fulfill the GSL of thermodynamics, i.e. TAṠtot ≥ 0.
Thus, the violation of the GSL in a f(R) model means that the model does not approach
thermodynamic equilibrium at late times [106]. Of course, as we already mentioned, the GSL
can be used as a powerful tool to set bounds on cosmological f(R) models [86]. It means
that we can set the parameters of a given f(R) model so that the GSL holds throughout
the evolution of the universe. Although the parameters used for each model in Figs. 1-5
are the viable ones, by more fine tuning the model parameters the GSL can be held and
consequently the model approaches thermodynamic equilibrium at late times. For instance,
in AB f(R) model by choosing the model parameter as b = 1.3, the GSL is always satisfied
from early times to the late cosmological history of the universe.

In Figs. 6-10, we plot the evolutions of RFR, Geff/G, g and the growth factor f versus z
for the selected f(R) models. Figures show that: (i) RFR goes to zero for higher values of z
which means that the f(R) models at high z regime behave like the ΛCDM model. (ii) The
screened mass function Geff/G for a given wavenumber k is larger than one which makes
a faster growth of the structures compared to the GR. However, for the higher redshifts,
the screened mass function approaches to unity in which the GR structure formation is
recovered. Note that the deviation of Geff/G from unity for small scale structures (larger k)
is greater than large scale structures (smaller k). (iii) The linear density contrast relative to
its value in a pure matter model g = δ/a starts from an early matter-dominated phase, i.e.
g ≃ 1 and decreases during history of the universe. For a given z, g in the all f(R) models
is greater than that in the ΛCDM model. (iv) The evolution of the growth factor f(z) for
f(R) models and ΛCDM model together with the 11 observational data of the growth factor
listed in Table 1 show that for smaller structures (larger k), the all f(R) models deviate
from the observational data. But for larger structures (smaller k), the growth factor in the
all f(R) models, very similar to the ΛCDM model, fits the data very well.
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Figure 1: The variations of the Hubble parameter H/H0, the Ricci scalar R/H2
0 , the de-

celeration parameter q, the density parameter Ωi, the effective EoS parameter ωeff , the

EoS parameter of DE ωD, the GSL, GTAṠtot and
F̈

2H2 versus redshift z for the Starobinsky
model. Auxiliary parameters are Ωm0 = 0.24, ΩD0 = 0.76, Ωrad0 = 4.1 × 10−5, λ = 1 and
n = 2 .
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Figure 2: Same as Fig. 1 but for the Hu-Sawicki model. Auxiliary parameters are Ωm0 =
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Figure 3: Same as Fig. 1 but for the Exponential model. Auxiliary parameters are Ωm0 =
0.24, ΩD0 = 0.76, Ωrad0 = 4.1× 10−5 and β = 1.8.
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Figure 4: Same as Fig. 1 but for the Tsujikawa model. Auxiliary parameters are Ωm0 = 0.24,
ΩD0 = 0.76, Ωrad0 = 4.1× 10−5 and λ = 1.



96 S. Asadzadeh et al.

-1 0 1 2 3

1.0

1.5

2.0

2.5

3.0

3.5

4.0

z

H
Hz
L�

H
0

AB f HRLModel

-1 0 1 2 3

10

20

30

40

50

z

R
Hz
L�

H
02

AB f HRLModel

-1 0 1 2 3

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

z

qH
zL

AB f HRLModel

-1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

z

W
iH

z
L

AB f HRLModel

WD HzL

Wm HzL

-1 0 1 2 3

-1.0

-0.8

-0.6

-0.4

-0.2

z

Ω
ef

fH
zL

AB f HRLModel

-1. -0.96 -0.92

-1.

-0.998

-1 0 1 2 3

-1.04

-1.02

-1.00

-0.98

-0.96

z

Ω
D
Hz
L

AB f HRLModel

-1. -0.96 -0.92

-1.

-0.998

-1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

z

G
T

A
S 

T
ot

AB f HRLModel

-1. -0.96 -0.92

0.

0.002

-1.00 -0.98 -0.96 -0.94 -0.92 -0.90
-0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

z

F..

�2
H

2

AB f HRLModel

Figure 5: Same as Fig. 1 but for the AB model. Auxiliary parameters are Ωm0 = 0.24,
ΩD0 = 0.76, Ωrad0 = 4.1× 10−5 and b = 1.4.
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Figure 6: The variations of RFR, the screened mass function Geff/G, the linear density
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versus redshift z for the Starobinsky model.
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Figure 7: Same as Fig. 6 but for the Hu-Sawicki model.
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Figure 8: Same as Fig. 6 but for the Exponential model.
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Figure 9: Same as Fig. 6 but for the Tsujikawa model.
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Figure 10: Same as Fig. 6 but for the AB model.

Table 1: The observational data for the linear growth rate fobs(z).
z 0.15 0.22 0.32 0.35 0.41 0.55 0.60 0.77 0.78 1.4 3.0

fobs 0.51 0.60 0.654 0.70 0.70 0.75 0.73 0.91 0.70 0.90 1.46

1σ 0.11 0.10 0.18 0.18 0.07 0.18 0.07 0.36 0.08 0.24 0.29

Ref. [107] [110] [111] [112] [110] [113] [110] [114] [110] [115] [116]

8 Conclusions

Here, we investigated the evolution of both matter density fluctuations and GSL in some
viable f(R) models containing the Starobinsky, Hu-Sawicki, Exponential, Tsujikawa and AB
models. For the aforementioned models, we first obtained the evolutionary behaviors of the
Hubble parameter, the Ricci scalar, the deceleration parameter, the matter and DE density
parameters, the EoS parameters and the GSL. Then, we explored the growth of structure
formation in the selected f(R) models. Our results show the following.

(i) All of the selected f(R) models can give rise to a late time accelerated expansion phase
of the universe. The deceleration parameter for all models shows a cosmic deceleration q > 0
to acceleration q < 0 transition. The present value of the deceleration parameter takes place
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in the observational range. Also, at late times (z → −1), it approaches a de Sitter regime
(i.e. q → −1), as expected.

(ii) The effective EoS parameter ωeff for the all models starts from the matter dominated
era, ωeff ≃ 0, and in the late time, z → −1, it behaves like the ΛCDM model, ωeff → −1.

(iii) The evolution of the EoS parameter of DE, ωD, shows that the crossing of the
phantom divide line ωD = −1 appears in the near past as well as farther future. This is a
common physical phenomena to the existing viable f(R) models and thus it is one of the
peculiar properties of f(R) gravity models characterizing the deviation from the ΛCDM
model [101].

(iv) The GSL is respected from the early times to the present epoch. But in the farther
future, the GSL for the all models is violated in some ranges of redshift. The physical reason
why the GSL does not hold in the farther future is that the sign of F̈ changes from positive
to negative due to the dominance of DE over non-relativistic matter.

(v) For all models, the screened mass function Geff/G is larger than 1 and in high z
regime goes to 1. The deviation of Geff/G from unity for larger k (smaller structures) is
greater than the smaller k (larger structures). The modification of GR in the framework of
f(R)-gravity gives rise to an effective gravitational constant, Geff , which is time and scale
dependent parameter in contrast to the Newtonian gravitational constant.

(vi) The linear density contrast relative to its value in a pure matter model, g(a) = δm/a,
for all models starts from an early matter-dominated phase, g(a) = 1, and decreases during
history of the universe.

(vii) The evolutionary behavior of the growth factor of linear matter density perturba-
tions, f(z), shows that for all models, the growth factor for smaller k (larger structures) like
the ΛCDM model fits the data very well.

It is worth noting that the f(R)-gravity for very small wavenumbers (larger structures)
is completely indistinguishable from ΛCDM. The main effect of the f(R) theory is in quasi-
linear regimes, large wavenumbers (smaller structures) where the growth rate has a strong
scale dependence and deviates from the standard ΛCDM case. Also, for any given wavenum-
ber corresponding to the larger/smaller structures, the f(R) model can have a growth func-
tion identical to Λ’s at high redshift. Future surveys of the large scale structure such as
eBOSS, DESI, Euclid, or WFIRST [26] may reveal the growth index in terms of wavenum-
ber of the structures and help the f(R)-gravity models to be clearly distinguished from the
ΛCDM model.
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