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Abstract. This work investigates a fundamental pedagogical question concerning
the definition of the energy-momentum tensor in theoretical physics. Students learn
the definition of energy-momentum tensor in the field theory and on the other hand
a different definition of energy-momentum tensor in general relativity. why are these
definitions equivalent? We present a proof establishing the equivalence between two
seemingly distinct definitions: we analyze how the canonical energy-momentum tensor,
obtained via Noether’s theorem, corresponds to the symmetric energy-momentum ten-
sor derived through variational methods in general relativity. Our approach involves
a general coordinate transformation in which both the fields and the metric are varied
simultaneously. By applying Noether’s theorem and requiring the total variation of the
action to vanish, we bridge the gap between the field-theoretic and geometric formu-
lations. This analysis elucidates the deep conceptual link between the two definitions
and enhances the understanding of energy-momentum in modern theoretical physics.
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1 The definition of Energy momentum tensor in general
relativity

Starting from the Einstein-Hilbert action, the Einstein field equation can be obtained by
varying the action with respect to the metric. This action consists of geometrical part as
the field and the matter part,

S =
1

16πG

∫
R
√
−gd4x+

∫
LM

√
−gd4x, (1)

where for simplicity, we exclude the surface terms for the geometric part [1]. From the
variation of action with respect to the metric (i.e. δS/δgµν = 0), we get the Einstein tensor
from the first term of the action and the energy-momentum tensor of the matter from the
second term [2]. This leads to

Gµν = 8πGTµν , (2)
where we set c = 1 and

Tµν =
−2√
−g

δ(LM
√
−g)

δgµν
. (3)
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In the variation process, we perform a diffeomorphic map of M → M′ which involves the
infinitesimal variation of metric, g′µν = gµν + δgµν ( with δgµν ≪ 1) around the stationary
solution. We can simplify equation (3) by taking the variation in parts as

Tµν = −2
δLM
δgµν

+ gµνLM . (4)

This equation is the classical definition of the energy-momentum tensor in general relativity
in curved space-time. In order to derive the energy-momentum tensor of a field in the
Minkowski space one can apply the covariant principle, replacing gµν → ηµν and ∇µ → ∂µ.

2 Definition of the energy-momentum tensor in classical
field theory

In this section, we review the definition of the energy-momentum tensor in the classical field
theory. Using the Neother theorem [3], let us consider a Lagrangian density of LM (ψℓ, ∂ψℓ)
where superscript ℓ represents any arbitrary class of fields. Now, we define a generic trans-
formation of the field as

ψℓ(x) → ψℓ(x) + iϵ(x)Fℓ(ψℓ, ∂ψℓ), (5)

where ϵ(x) is an infinitesimal function of spacetime and Fℓ contains the ψℓ and derivatives
of the field . Under this transformation, the action of S =

∫
LM (ψℓ, ∂ψℓ)d4x varies as

δSM = i

∫ (
∂L
∂ψℓ

ϵ(x)Fℓ +
∂L

∂(∂µψℓ)
∂µ(Fℓϵ(x))

)
d4x. (6)

The variation of action, taking ϵ as an infinitesimal parameter , which satisfies Euler-
Lagrange equation is zero,

δL =
∂L
∂ψℓ

ϵFℓ +
∂L

∂(∂µψℓ)
ϵ∂µ(Fℓ) = 0, (7)

then, the variation of action considering ϵ as the function of space-time simplifies to

δSM = i

∫
∂L

∂(∂µψℓ)
Fℓ∂µϵ(x)d

4x, (8)

where we can define a current as

Jµ = −i ∂L
∂(∂µψℓ)

Fℓ, (9)

and taking derivatives in part in the equation (8), the current satisfies the conservation of
charge as ∂µJµ = 0, having δSM = 0.

Now, we follow a similar argument to find symmetries of a matter field living on a
Riemannian manifold, with a subclass of variation of the fields by an infinitesimal coordinate
transformation of

x′µ = xµ + ϵµ(x). (10)
According to this transformation, using the Taylor expansion, the field varies as

ψℓ(x+ ϵ) = ψℓ(x) + ψℓ;νϵ
ν(x). (11)
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Note that since we are doing the Taylor expansion of a field and at the same time to keep
the variation of action covariant. Here ”;” represents the covariant derivative. The action
of the matter field by this transformation varies as

δSM =

∫ (
∂LM
∂ψℓ

ψℓ;νϵ
ν(x) +

∂LM
∂(ψℓ;λ)

(ψℓ;νϵ
ν(x));λ

)
√
−gd4x. (12)

We can rewrite this equation as

δSM =

∫ (
(
∂LM
∂ψℓ

ψℓ;νϵ
ν(x) +

δLM
∂ψℓ;λ

(ψℓ;ν);λϵ
ν(x) +

∂LM
∂ψℓ;λ

ψℓ;νϵ
ν
;λ(x)

)
√
−gd4x, (13)

noting that the first and the second terms of integration of (13) is ϵν(x)dLM/dxν . So, the
integral simplifies to

δSM =

∫ (
dLM
dxν

ϵν(x) +
∂LM
∂ψℓ;λ

ψℓ;νϵ
ν
;λ(x)

)
√
−gd4x, (14)

where differentiating by part and ignoring the surface term, the final result is

δSM =

∫ (
−LMδλν +

∂LM
∂ψℓ;λ

ψℓ;ν

)
ϵν ;λ(x)

√
−gd4x. (15)

We note that this equation is similar to (8) and from the definition of Noether current, the
definition of the energy-momentum tensor of this field is given by

Tλν = −LMδλν +
∂LM
∂ψℓ;λ

ψℓ;ν , (16)

where imposing δSM = 0 and integrating by parts of equation (15) results in the conventional
form of conservation of energy-momentum tensor as Tλν;λ = 0. We note that in this variation
process, we keep the space-time on the manifold unchanged and let the variation of the fields
under an infinitesimal coordinate transformation.

3 On the equivalence of definition of energy momentum-
tensor

In this section, our aim is to show the equivalence of the definition of energy-momentum
tensor from the variation principle in general relativity and from the Neother theorem.

Let us take the Lagrangian of matter field as a function of field and metric as an individual
field as LM (ψℓ, ∂ψℓ, gµν). Then, we let the action of this Lagrangian,

S =

∫
LM (ψℓ, ∂ψℓ, gµν)

√
−gd4x,

vary just as a classical field, including the metric field as a rank-two tensor as well as the
matter field, ψℓ. Under the transformation of xµ → xµ + ϵµ(x), we have both the variation
of the field as δψℓ and the variation of metric as δgµν . The total variation of action is

δSM = δS
(ψ)
M + δS

(g)
M , (17)
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δSM =

∫ (
δL
δψℓ

δψℓ +
1√
−g

(
√
−gL)
δgµν

δgµν

)√
−gd4x. (18)

The second term by definition in general relativity is the energy-momentum tensor. So, we
can rewrite this equation as

δSM =

∫ (
δL
δψℓ

δψℓ − 1

2
Tµνδgµν

)√
−gd4x. (19)

Since the field equations satisfy the Euler-Lagrange equations, then δSM = 0.
In this first term of this equation, we substitute the variation of the action with respect

to the field from equation (15) while splitting the second term into two symmetric parts.
Also, we lower the index of ϵµ(x) using the metric. Then, action can be written as∫ (

−
1

2
LMgµν(ϵν ;µ(x) + ϵµ;ν(x)) +

1

2

∂LM

∂ψℓ
,µ

ψℓ
,νϵ

ν
;µ(x) +

1

2

∂LM

∂ψℓ
,ν

ψℓ
,µϵ

µ
;ν(x)−

1

2
Tµνδgµν

)
√
−gd4x = 0.

(20)
The coordinate transformation as the diffeomorphic transformation results in variation of

metric as
δgµν = ϵµ;ν + ϵν;µ. (21)

Substituting in equation (20), we can write the first term of this equation in terms of the
variation of metric. For calculating the second and third terms, let us assume a generic
kinetic term for the Lagrangian as K = f(− 1

2ψ
ℓ
;νψ

ℓ
;µg

µν), then the variation of Lagrangian
with respect to the fields, results in

∂LM
∂ψℓ;ν

=
∂K
∂ψℓ;ν

= −L′gµνψℓ;µ, (22)

where L′ is the derivation of the Lagrangian with respect to the argument containing the
kinetic term. Substituting in equation (20), the variation of action can be written as a
combination of variation of metric and coordinate as follows

1

2

∫ (
−LMgµνδgµν − L′∇ν(ψℓ)∇µψℓ (ϵν ;µ(x) + ϵµ;ν(x))− Tµνδgµν

)√
−gd4x = 0. (23)

On the other hand, for a Lagrangian with a generic kinetic term, we vary with respect to
the metric. The result is

δL
δgµν

δgµν = −1

2
L′∇µ(ψℓ)∇ν(ψℓ)δgµν , (24)

where substituting the identity of (21) in equation (24),

L′∇µ(ψℓ)∇ν(ψℓ)(ϵµ;ν(x) + ϵν;µ(x)) = L′∇µ(ψℓ)∇ν(ψℓ)δgµν = −2
δL
δgµν

δgµν , (25)

and substituting in equation (23), the variation of the action simplifies to

1

2

∫ (
−LMgµν + 2

∂L
∂gµν

+ Tµνδgµν

)
δgµν

√
−gd4x = 0, (26)

and from this equation the energy-momentum tensor obtain as

Tµν = −2
δLM
δgµν

+ gµνLM . (27)

We note that this is identical to the definition of energy-momentum tensor from variation
of metric which has been obtained by the variation of field via a genetic coordinate trans-
formation.



On Equivalence of the Energy-Momentum Tensor Definition 5

4 conclusion
In this pedagogical work, we introduced the definition of the energy-momentum tensor in
the conventional formalism of least action in general relativity by varying the action with
respect to the metric. On the other hand, we introduced the energy-momentum tensor in
the classical field theory where the Noether current is obtained from the action.

In order to show the equivalence of these two different definitions, we assumed that
the Lagrangian of the matter is made of the matter field and the rank-two metric field.
We applied the least action principle for this Lagrangian, taking into account that the
two distinct fields for the matter (ψℓ and gµν) vary independently, and from the least action
principle the variation of the action under infinitesimal coordinate transformation set to zero.
Then we used the identities from the two different definitions of the energy-momentum tensor
and showed that the two definitions of the energy-momentum tensor in general relativity
and classical field theory are equivalent.
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