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Abstract. The phenomenon of magnetic braking is one of the significant physical
effects of the magnetic field in rotating molecular clouds. Here, we revisit the work of
Nakano (1989). In addition to receiving his results, we investigate the effects of the
density ratio (between periphery of the core to its mean density), and the density con-
densations around the core. We consider the density profile of the surrounding medium
as r−η, where r is the distance from the core center and η is a constant between 0 and
4. Regarding the presence of some dense regions around the molecular cloud cores, a
Gaussian function is added to the density profile to represent these condensations in the
surrounding medium. The numerical method is used in the Laplace space to ascertain
the dependency of the angular velocity of the core to the time. The results show that
for larger η values, the time scale of the magnetic braking increases. Moreover, the
presence of condensation does not have a significant effect on the magnetic braking.
Also, the the results show that the magnetic braking being stronger with increasing
density ratio. This increasing indicates that the magnetic field is more firmly bonded to
the bulk materials. This effect strengthens the magnetic tension force and slows down
the core faster that indicates the importance of the magnetic braking. The results show
that increasing density slope and/or decreasing density ratio are somewhat effective in
weakening the magnetic braking and resolving its catastrophic effect.

Keywords: Stars: formation, ISM: magnetic fields, Methods: numerical, ISM: clouds,
MHD

1 Introduction
One of the interesting phenomena in the interstellar medium is the formation of stars and
planets. Various physical mechanisms, such as magnetic field, turbulent, rotation, etc.,
are influential in the process of star formation and its by-products (i.e., planets). The
rotation-incorporated magnetic fields have several important physical effects on the molec-
ular clouds(e.g. [1]). One of these significant physical effects is the magnetic braking [2],
which arises from the stress caused by the bending of magnetic field lines. This mechanism
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was first investigated by [3] to study the transport of angular momentum, from a massive
cold gas cloud through the hot galactic background, by the propagation of Alfvén waves.
The time-scale of the magnetic braking on the evolution of molecular cloud disks and cores
was investigated by some pioneer authors (e.g. [4–6]).

The magnetic braking process is also efficient in the collapse and fragmentation of molec-
ular clouds, which was first investigated by [7] for a rotating toroidal magnetized core, and
by [10] and [11] for the collapse and fragmentation of the prolate and oblate molecular clouds.
Studies showed that by assuming an ideal MHD and with the magnetic field aligned with
the rotational axis of the core, the magnetic braking disrupts the formation of disks around
the protostars (e.g. [16,27]). The disk formation depends on two main parameters which
control the efficiency of magnetic braking: the ratio of azimuthal and vertical components
of the magnetic field at the disk surface, and the Alfvén speed in the surrounding medium.
The high efficiency of the magnetic braking and disruption of disk formation around the
protostars is known as the magnetic braking catastrophe [17].

Three suggestions are presented to resolve the magnetic braking catastrophe: (1) non-
ideal MHD effects including ambipolar diffusion (e.g. [14,24,28,42,44,46,47]), Ohmic dissipa-
tion (e.g. [13,14,37,41,42]), and the Hall effect (e.g. [23,26,38,48]), (2) misalignment between
rotational axis and magnetic field (e.g. [12,18,20,22,23,45]), and (3) turbulence and the dy-
namical nature of the environment (e.g. [25,33–35,43]).

The net effect of magnetic braking on a dense core is due to the actual degree of the mag-
netic fields twisting, and the propagation of the torsional Alfvén waves into the surrounding
medium. Thus, the properties of the surrounding medium can influence the magnetic brak-
ing efficiency. For example, [30] (hereafter N89) analytically analyzed the effect of variations
of the ambient density, around a rotating core, on the magnetic braking time scale. He con-
sidered the variation of density in the surrounding medium as r−η, where r is the distance
from the core center and η is a constant between 0 and 4. For η = 4, the results show an
exponential decline in the core angular velocity with respect to time t. For 0 ≤ η < 4, the
core angular velocity has two decreasing (over time) components: one component decreases
exponentially with t and the other decreases proportional to t−(10−2η)/(6−η) at large t val-
ues. The surrounding medium of the molecular cloud cores also have complex structure with
fragmentation and small condensations (e.g. [15,19,21]). These density condensations in the
ambient medium may also influence the magnetic braking efficiency.

Here, we revisit the work of N89, who used an analytical method to solve the equations
and determine the magnetic braking time scales. In the case of η = 4, an exact analytical
solution was obtained, while for 0 ≤ η < 4, N89 used the approximation of ρ(Z) ≪ ρcc,
where ρ(Z) is the density at the periphery of core (where a layer approximation for the core
can be used) and ρcc is the core mean density. Numerical methods must be used to solve
the equations without considering the above approximation and determine the time scale
of the magnetic braking for the 0 ≤ η < 4 case. In this way, not only the solutions of N89
are obtained, but we can also extend the work to consider the effects of the density ratio,
ρ(Z)/ρcc, and also density condensations. For this purpose, in § 2, we formulate the problem
as outlined by N89. In § 3, by transforming to the Laplace space, the same equations are
derived for the core angular velocity. In the following, we express the method of numerical
solution. In § 4, the results are given. The effect of density condensations on the magnetic
braking is considered in § 5. Finally, § 6 is devoted to a summary and conclusions.
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2 Formulation of the problem
We consider a rigidly rotating core inside an axisymmetric molecular clump in spherical
polar coordinates (r, θ, ϕ). We neglect the contraction/expansion of the clump (vr ≈ 0) with
negligible poloidal velocity (vθ ≈ 0) so that we have a purely rotatory motion with vϕ = ϖΩ,
where Ω is the angular velocity and ϖ = r sin θ is the distance from the symmetry axis.

z = 0

z = Z

z = -Z

z

core

layer

clump

Figure 1: Schematic diagram of the magnetic configuration around an oblate core and its
surrounding clump. The magnetic field is assumed to be uniformed outside the clump. The
layer is assumed to rotate rigidly whit the core, so that the torsional Alfvén waves (twisted
field lines depicted as shaded regions) propagate outside this layer. The toroidal components
of the twisted magnetic field lines create a braking torque that counteract the spinup of the
core/layer and lowers its angular velocity.

We adopt the magnetic configuration as outlined by a schematic diagram in the Figure 1.
We assume that the magnetic fields are well frozen into the core and its ambient clump. The
rotation of the cloud core through the ambient medium, bends the magnetic fields so that
a torsional Alfvén wave will propagate through the clump (e.g., [36]). The Alfvén velocity,

vA = 1.5

(
B

10µG

)( n

102cm−3

)− 1
2

km s−1, (1)

is much greater than the rotational velocity in a typical clump region,

vϕ = 0.03

(
Ω

10−14s−1

)(
ϖ

0.1pc

)
km s−1, (2)
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so that we focus our attention around the symmetry axis in which Bθ ≈ 0 and Br ∝ r−2.
The magnetic induction equation for a purely rotatory motion with v = eϕvϕ, leads to
∂Br/∂t = ∂Bθ/∂t = 0. Thus, Br is independent of the time, and Bθ = 0 at all the times.

Assuming that both the fluid configuration and the field are axisymmetric, the only
functional component of the magnetic torque on the element is along the symmetry axis
(with unit vector ez). This component exerted on the gas around the symmetry axis of the
clump, as measured per unit volume, is

γzez = ϖeϖ × 1

4π
[(∇× B)× B]ϕ. (3)

On the other hand, this torque is equal to the rate of change of the gas angular momentum,
γz = ∂(ρϖvϕ)/∂t, where ρ is the density of the clump. In this way, equation (3) can be
rewritten as

∂vϕ
∂t

=
Br

4πρ

1

r

∂

∂r
(rBϕ) , (4)

Differentiating this equation with respect to t, and using the ϕ-component of the magnetic
induction equation,

∂Bϕ

∂t
=

1

r

∂

∂r
(rvϕBr) , (5)

with the relation vϕ = Ωr sin θ, we have

∂2Ω

∂t2
=

[Br(Z)]2

4π(r/Z)2ρ

∂2Ω

∂r2
, (6)

where Br = Br(Z)(r/Z)−2 is used, where Br(Z) is the magnetic field at the point z = Z,
above the core’s pole.

We consider two points on the symmetry axis, with a short distance from the poles,
outside the core. The coordinates of these points are z = −Z and z = Z relative to the core
center. We assume that the layer between these points rotates rigidly with the core, and
solve the propagation of the torsional Alfvén wave outside this layer. The continuity of the
field lines, between the layer surfaces and the clump gas, requires that the angular velocity
of the layer be equal to Ω(r = Z, t). The angular velocity of the layer changes with time
according to IdΩ(r = Z, t)/dt = N , where

N = 2ϖBz(ϖ,Z, t)Bϕ(ϖ,Z, t)/4π, (7)

is the torque exerted on the layer per unit area (by assuming symmetry with respect to
midplane z = 0), and I = σϖ2 is the moment of inertia per unit area, where σ is the column
density of layer along the z-axis. Substituting I and N into the equation of rotational motion
of the layer, and differentiating with respect to t, leads to

d2Ω(r = Z, t)

dt2
=

[Br(Z)]2

2πσ

(
∂Ω

∂r

)
r=Z

, (8)

where the ϕ-component of the magnetic induction equation (5) is also used.
The density distribution of the clump at r ≥ Z is assumed as

ρ(r) = ρ(Z)
( r

Z

)−η

, (9)

where ρ(Z) is the density at the periphery of core (where a layer approximation for the core
can be used) and η is a constant between 0 and 4.
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We use the scale values of length and time equal to Z and Z/vA(Z), respectively, where
vA(Z) ≡ Br(Z)/[4πρ(Z)]1/2 is the Alfvén velocity at r = Z. In this way, we rewrite the
equations (6) and (8) as

∂2Ω

∂τ2
=

1

ξ4−η

∂2Ω

∂ξ2
, ξ > 1, (10)

d2Ω(ξ = 1, t)

dτ2
=

ρ(Z)

ρL

(
∂Ω

∂ξ

)
ξ=1

, (11)

where ξ ≡ r/Z is the non-dimensional length, τ ≡ tvA(Z)/Z is the non-dimensional time,
and ρL ≡ σ/2Z is the layer (and also the core) mean density.

3 Solution method
The Laplace transform of the equation (10), with initial condition Ω = ∂Ω/∂τ = 0, at τ = 0
for clump gas (ξ > 1), is

s2Ω̃ =
1

ξ4−η

∂2Ω̃

∂ξ2
, (12)

where
Ω̃(ξ, s) =

∫ ∞

0

Ω(ξ, τ)e(−sτ)dτ, (13)

is the Laplace transform of Ω(ξ, τ). Equation (12) can be reduced to the modified Bessel
equation, with physical solution as

Ω̃(ξ, s) = A(s)ξ1/2Kν(2sνξ
1/2ν), (14)

where ν ≡ 1/(6− η), and A(s) depends on the boundary conditions. Substituting equation
(14) into the Laplace transform of equation (11),

s2Ω̃(ξ = 1, s)− sΩ0 =
ρ(Z)

ρL

(
∂Ω̃

∂ξ

)
ξ=1

, (15)

where Ω0 = Ω(ξ = 1, τ = 0) is the initial angular velocity of the core (and also the layer)
with initial condition dΩ(ξ = 1, τ)/dτ = 0 at τ = 0, we obtain

A(s) = Ω0

[
sKν(2sν) +

ρ(Z)

ρL
Kν−1(2sν)

]−1

. (16)

By substituting the relation (16) into the result (14), and then using the inverse Laplace
transform, we obtain

Ω(ξ = 1, τ) =
Ω0

2πi

∫ γ+i∞

γ−i∞

Kν(2sν)e
sτ

sKν(2sν) + [ρ(Z)/ρL]Kν−1(2sν)
ds, (17)

for the angular velocity of the core. The integrand in this equation is a multi-valued function
on the complex s-plane and the exact analytical evaluation of the integral is rather difficult.
N89 evaluated this integral approximately by assuming that the surface layer density, ρ(Z),
is much smaller than its mean density, ρL. He found that the angular velocity of the core
oscillates with an amplitude decreasing exponentially.
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Here, we use an approximately numerical method to evaluate the solution of equation
(17). We know that the magnetic braking (or damping) is a consequence of the Eddy
currents across the magnetic field lines. These currents, which are theoretically derived
from the Lenz’s law (represented in equation 5), are also investigated by many experiments
(e.g., [9,29]). For example, the experiment of a magnetic pendulum bob above a metal plate
show that the Eddy currents created in the metal plate cause the magnetic braking to decay
the pendulum angular position as a damped oscillatory motion (e.g., [31,40]). According to
this physical view of the magnetic braking effect, we are looking for the damped oscillatory
solution to solve the equation (17). Of course, we must note that slowing down the rotation
of the core due to the magnetic braking is not a continuous pendulum-like motion, i.e., its
decreasing functionality has a physical meaning only before the first zero of the angular
velocity. For this purpose, we choose an oscillating function with exponentially decreasing
amplitude as

Ω(ξ = 1, τ) = γe−αcτ cos(kcτ)− (γ − Ω0)e
−βcτ , (18)

where the initial condition Ω(ξ = 1, τ = 0) = Ω0 is satisfied, and γ, α, c, k and β are
constants. The Laplace transform of the equation (18) is (e.g., [8])

Ω̃(ξ = 1, s) =
γ

c

s
c + α(

s
c + α

)2
+ k2

− (γ − Ω0)

c

1(
s
c + β

) . (19)

The condition lims→∞ Ω̃ = 0 is satisfied, and the condition lims→0 Ω̃ = 0 leads to

γ = Ω0

1
β

1
β − α

α2+k2

. (20)

Thus, here, we have four unknown parameters α, β, c and k.
The basic approach in our numerical method is to adjust the best fitted values of the

four parameters a1 ≡ α, a2 ≡ β, a3 ≡ k, and a4 ≡ c, so that the merit function (19) yields
to the best-fit-result of the integrand of equation (17). For this purpose, we define a chi-
square nonlinear merit function and determine the best-fit parameters by its minimization
using some iterative methods. Here, we use the Levenberg-Marquardt method as outlined
by Press et al. (1992).

4 Results
To investigate the effect of the magnetic braking of the core, we transformed the equations
(10) and (11) into the Laplace space and achieved the integral (17). The exact analytical
evaluation of the integral (17) is rather difficult. The integration for the case of ν = 1/2 can
be performed analytically. The solution in this case is investigated by N89 as

Ω(ξ = 1, τ) = Ω0 exp

(
−ρ(Z)

ρL
τ

)
. (21)

He also evaluated the equation (17) by assuming the approximation ρ(Z) ≪ ρL. The
approximate results show that the behavior of the angular velocity, Ω(ξ = 1, τ), is oscillatory
decay (e.g., [3,4,30]). Here, we applied a damping oscillatory function (18) whose Laplace
transform, according to the Laplace transform tables, is represented by the equation (19).
In this way, there is no need to solve the integral in equation (17) analytically because the
equation (19) is the inverse Laplace of the chosen equation (18).
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Figure 2: Angular velocity of the core vs. non-dimensional time, for ρ(Z)/ρL = 10−3 and
ν = 1/3 (solid), ν = 1/4 (dash), ν = 1/5 (dot), and ν = 1/6 (dash-dot).

Figure 3: Angular velocity of the core vs. non-dimensional time, for ν = 1/4 and ρ(Z)/ρL =
1 × 10−3 (solid), ρ(Z)/ρL = 2 × 10−3 (dash), ρ(Z)/ρL = 3 × 10−3 (dot), and ρ(Z)/ρL =
4× 10−3 (dash-dot).
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Figure 4: Non-dimensional stop-time according to the varies values of ν, for ρ(Z)/ρL = 1×
10−3 (solid), ρ(Z)/ρL = 2×10−3 (dash), ρ(Z)/ρL = 3×10−3 (dot), and ρ(Z)/ρL = 4×10−3

(dash-dot).

Here, in addition to the effect of ν, we want to examine the effects of the density ratio,
ρ(Z)/ρL, on the behavior of the core angular velocity and the magnetic braking. For this
purpose, we use the numerical method. Equation (19) has four parameters: α, c, k and β.
We can determine these four parameters by fitting the equation (19) to the integrand of
the equation (17). To investigate the effect of ν, we choose ρ(Z)/ρL = 10−3. For ν = 1/3,
1/4, 1/5 and 1/6, we find the best parameters. Figure 2 shows the angular velocity function
(18) versus the non-dimensional time. Then, we choose a typical value of ν = 1/4, and
examine the effect of the various values of the density ratio ρ(Z)/ρL. Here, we choose
ρ(Z)/ρL = 1× 10−3, 2× 10−3, 3× 10−3, and 4× 10−3, and find the best fitted parameters.
The angular velocity function (18) versus the non-dimensional time is shown in Figure 3.

The figures 2 and 3 show the damping oscillating functions, which are due to the magnetic
braking effects on the rotational core. These curves, which include multiple zeros, are
just the mathematical results of solving the equation (17). It is obvious that due to the
dynamical behavior of gases, the angular velocity of the molecular cloud cores never reaches
to zero. Physically, only the decreasing behavior of the angular velocity before the first zero
is desired. There is not any physical reasoning behind the obtained first zero in the solution.
Here, we defined a stop-time, τs, which indicates the point where the core angular velocity,
Ω(ξ = 1, τ), reaches to the first zero. In dimensional time we have

ts = 6.3× 104 τs

( vA
1.5km s−1

)−1
(

Z

0.1pc

)
yr. (22)

The change of τs with respect to ν, for different density ratios, is shown in Figure 4. Also,
the changes of τs in terms of ρ(Z)/ρL, for different values of ν, are plotted in Figure 5.
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Figure 5: Non-dimensional stop-time according to the varies values of ρ(Z)/ρL, for ν = 1/3
(solid), ν = 1/4 (dash), ν = 1/5 (dot), and ν = 1/6 (dash-dot).

5 The effect of density condensation
In this section, instead of density distribution (9), we use

ρ(r) = ρ(Z)f(r)
( r

Z

)−η

, (23)

where
f(r) = 1 + εe−(

r−rc
∆ )

2

, (24)
is a Gaussian function representing the condensation in the surrounding medium, with the
amplitude ε and width ≈ 2∆, at distance rc > Z + ∆ from the core center. Using this
density profile in the equations (6) and (8), after Laplace transformation, we have

s2Ω̃ =
1

ξ4−ηf(ξ)

∂2Ω̃

∂ξ2
, (25)

instead of the equation (12).
With physical solution as Ω̃(ξ, s) = A(s)ξ1/2Yν(x), instead of the known modified Bessel

equation (14), here, equation (25) leads to

x2Y
′′

ν (x) + xY
′

ν (x)−
[
x2fν(x) + ν2

]
Yν(x) = 0, (26)

where x ≡ 2sνξ1/2ν and
fν(x) = 1 + εe−(

x2ν−x2ν
c

δ2ν
)2 , (27)

where xc ≡ 2sνξ
1/2ν
c and δ ≡ 2sν(∆/Z)1/2ν . If ε → 0, then, the differential equation (26)

becomes the modified Bessel differential equation whose answer is known as Kν(x). Here,
we assumed that the function Yν(x) is equal to the modified Bessel function in the regions of
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x ≫ xc and x ≪ xc as the boundaries of the differential equation (26). In this way, the two
point boundary value problem of the differential equation (26) can be numerically solved
using the shooting or relaxation methods [32].

Similar to derivation of the equation (17), we reach to

Ω(ξ = 1, τ) =
Ω0

2πi

∫ γ+i∞

γ−i∞

Yν(2sν)e
sτ

sYν(2sν)− [ρ(Z)/ρL]
[

1
2sYν(2sν) + Y ′

ν (2sν)
]ds, (28)

for the angular velocity of the core. Here, we use the proposed numerical method to solve
the equation (17) to find the best fitted parameters for the angular velocity concerned to the
opted density profile (23). For this porpous, we fit the merit function (19) to the integrand
of the equation (28) to obtain the four parameters α, β, k, and c.

Figure 6: Percentage difference between the integrands of the equations (28) and (17),
Ω̃Y −Ω̃B

Ω̃B
×100, where Ω̃Y and Ω̃B are their integrands, respectively. Here, we choose ν = 1/4,

ρ(Z)/ρL = 10−3 and xc = 2.5.

The equation (27) is a Gaussian function representing the condensation in the surround-
ing medium with two important parameters: ε and δ. Here, we choose xc = 2.5 and solve
the equation (28) with ε ≤ 100 and δ ≤ 0.015. Figure 6 shows the percentage difference
between the integrands of the equations (28) and (17), versus s. As can be seen from the
Figure 6, this percentage difference is less than 0.16%. Thus, our method to solve the equa-
tion (28) shows that the presence of condensations in the surrounding medium does not have
a significant effect on the magnetic braking of the core.

6 Summary and conclusions
The purpose of this research is to re-examine the magnetic braking of a rotating molecular
cloud core which was previously approximated in an analytical method by N89. He assumed
that the density ratio of the surrounding medium (core periphery) to the core mean density
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was much smaller than unity. In this way, he succeeded to analytically solve the problem by
using some approximations. To investigate the effects of the density ratio and the existence
of the condensations in the surrounding medium, we formulated the problem as outlined by
N89, and solved numerically.

Figure 1 schematically depicts the configuration of the magnetic fields for a rotating
core inside a clump, and the propagation of the Alfvén waves that cause magnetic braking.
By transforming to the Laplace space, the angular velocity of the core can be obtained by
solving the Laplace inverse transformation integral (17). The inverse Laplace transform can
be determined in various ways such as the calculus of residues, numerical approach, and a
table of transforms (e.g., [8]). Here, we used the table transform to present the solution of
the equation (17) by a damped oscillating function (18), whose Laplace transform is given
by function (19). By fitting the function (19) on the integrand of the equation (17), the four
parameters: α, β, c, and k can be obtained which can be used to plot the function (18) for
different values of ν and ρ(Z)/ρL.

The case of ν = 1/2, whose exact analytical answer is expressed by the equation (21)
is solved by the above numerical approach. The parameters were as follows α = ρ(Z)/ρL,
β = 0, c = 1, and k = 0. The effect of different values of ν on the angular velocity of the core
for a typical density ratio is shown in Figure 2. For smaller ν values, the angular velocity
of the core decreased over a shorter period of time, therefore, the magnetic braking acts
more strongly. According to ν = 1/(6− η) and the density distribution (9), the values of ν
change the form of radial density dependence of Alfvén waves propagation environment in
the clump. The steep density distribution, ∝ 1/r4, corresponds to ν = 1/2. In this case, the
effect of the magnetic braking on the angular velocity of the core has an exact solution in
the form of an exponential function (21). For η = 0, the density of clump is constant, thus,
the minimum ν will be equal to 1/6. By reducing ν from 1/2 to 1/6, the slope of the density
function decreases. Based on the Figure 2, the magnetic braking becomes stronger as the
density slope by decreasing r. Physically, the propagation of the Alfvén waves through the
clump medium transport the angular momentum of the core, thereby, reducing its angular
velocity. The rotating core significantly slows down when the Alfvén waves set into rotational
motion and the amount of clump matter with the moment of inertia equals to that of the
core. For lower density slope of the clump medium, a shorter time is required for the moment
of inertia of the ambient material to be equal to the moment of inertia of the core. Therefore,
the reduction of ν strengthens the magnetic braking as shown in Figure 2.

To investigate the effect of density ratios, we considered typically ν = 1/4. The angular
velocity of the core is plotted versus the non-dimensional time in Figure 3 for ρ(Z)/ρL =
1, 2, 3, and 4× 10−3. As seen, the effect of magnetic braking increases in the larger density
ratios. For the case where the density drops more slowly from the core center to the surface
of the layer, the density ratio ρ(Z)/ρL will be higher. Increasing of the density ratio implies
an increase in charged particles close to the surface of the layer. According to the flux
freezing assumption, the increase in the charged particles increases the dependence of the
magnetic field lines on the bulk materials in this region. Such an increase in the dependence
of the magnetic field to the bulk materials strengthens the magnetic tension force and thus,
slows down the layer faster and increases the importance of magnetic braking.

A dimensional time scale is presented in the equation (22) which quantifies the time
needed for the core (as well as the layer) to entirely cease the rotation by the magnetic
braking. This time scale indicates the upper limit of the magnetic braking effect, while
physical times are much smaller than τs (there is not any physical meaning for the resulted
solutions behind this stop-time). The variations of this time scale are shown in the Figure 4
and 5 for different values of ν and density ratios ρ(Z)/ρL, respectively at the Alfvén wave
speed of 1.5 kms−1 and the layer dimension of 0.2 pc. As can be seen, the stop time decreases
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with decreasing ν or increasing the density ratio. Also, according to the order of magnitude
of non-dimensional stop times in the figures 4 and 5, and by substituting in the equation
(22), the effective time scale of magnetic braking will be in the order of 104 years. A
Gaussian function (24) was added to the density profile to investigate the existence of the
condensations in the surrounding medium. The percentage difference between the integrands
of the equations (28) and (17) are shown in the Figure 6. Since the percentage difference
is less than 0.16%, in contrast to some studies such as Machida et al. (2011) [25], which
demonstrated that the efficiency of magnetic braking on the disk formation is related to the
mass of the envelope surrounding the core, our findings suggest that the existence of local
Gaussian condensations in the surrounding medium does not have a significant influence on
the magnetic braking of the core.

One of the astrophysical consequences of the magnetic braking phenomena is its catas-
trophic effect on disk disruption in the star-forming cores. Some physical mechanisms such
as non-ideal MHD, turbulence, and misalignment between rotational axis and magnetic field
have been proposed to weaken the magnetic braking effect. The results of this research show
that the consideration of the variations of the density in the surrounding medium and/or
the variations of the density ratio can change the magnetic braking time scale for one order
of magnitude. Thus, regardless of the above three proposed mechanisms, increasing density
slope (increasing ν) and decreasing density ratio (ρ(Z)/ρL) are somewhat effective in weak-
ening the magnetic braking and resolving its catastrophic effect. Of course, our numerical
method did not show any impressive effect of the density condensations on the issue of the
magnetic braking catastrophe, and some numerical simulations should be done for more
accurate calculations.
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