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Abstract. The transfer of a beam of high-energy particles, such as electrons, to the
center of a fuel pellet is a significant aspect of plasma fusion processes. When the
beam is directed toward the center of the fuel pellet, a counter-current is generated
by the plasma electrons surrounding the pellet. This current leads to the production
of an electromagnetic field. The growth of this electromagnetic field results in the ap-
pearance of instabilities, including filamentation instability within the plasma medium.
Furthermore, the gradual growth of these instabilities disrupts energy transfer to the
fuel pellet, hindering the achievement of ideal ignition conditions. The present study
investigated the effects of parameters such as the density gradient of the fuel pellet,
thermal anisotropy and the relativistic mass factor on filamentation instability in a
beam-plasma system that includes non-relativistic background electrons and a rela-
tivistic mono-energetic electron beam. By linearizing Maxwell-Vlasov equations, the
dispersion relation for filamentation instability was derived. While solving the disper-
sion equation and calculating the instability growth rate, it was observed that with
increasing the scale length of the density gradient, due to the higher collision rate and
the increase in energy transfer to the plasma particles, the growth rate of filamentation
instability decreased. Additionally, it was found that increasing the relativistic mass
factor and thermal anisotropy fraction leads to an increase in the instability growth
rate due to increased internal energy dissipation.

Keywords: Electromagnetic, Instability, Dispersion relation, Density gradient, Fila-
mentation instability, Thermal anisotropy

1 Introduction
In the process of plasma fusion, the transfer of a beam of high-energy particles to the center
of a fuel pellet through focusing a short, high-energy laser pulse is of particular importance
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[1].The energy deposition of electron beams near the center of the target pellet is associated
with the appearance of various instabilities, leading to significant challenges. In laser-plasma
interactions, the generated high-energy particle beam disrupts the quasi-neutrality of the
plasma. Therefore, the target plasma, while generating a counter-current against the elec-
tron beam, attempts to maintain the neutral state of its medium and minimize the beam
currents, ultimately leading to the generation of electromagnetic fields [2]. Due to the pro-
duction of strong magnetic fields, electromagnetic instabilities will arise, playing a crucial
role in stopping electron beams, increasing energy losses, and preventing energy deposition
from the beam. Plasma filamentation due to thermal anisotropy was first introduced by Eric
Weibel in 1995. Over recent decades, numerous research studies have focused on transverse
instabilities as well as the effects of plasma resistivity and thermal anisotropy on filamenta-
tion instability [3,4]. When a high-intensity laser pulse is directed at a fuel pellet, a beam
of relativistic electrons is formed at critical density levels. Small-scale density fluctuations
generate a net current, during which perturbations and disturbances perpendicular to the
beam direction lead to the appearance of electromagnetic filamentation instability. This
instability arises from the repulsion between two opposing currents that tend to amplify
initial transverse disturbances [5,6].

When a high-power electromagnetic wave enters a plasma, instabilities appear within the
plasma [7,8]. The filamentation instability mode occurs when a low-density electron beam
interacts with a high-density ionized plasma [9]. This instability is classified among electro-
magnetic instabilities and transverse modes, arising from vertical perturbations affecting the
beam [10]. The processes of filamentation and filamentation instability have been studied
in laboratory settings through simulations. This instability has been observed in large-scale
cosmic plasmas, solar corona, and also in laboratory plasmas such as focus and magneto-
hydrodynamic generators. Furthermore, these types of instabilities play a significant role
in X-ray lasers, plasma lasers, particle accelerators, and laser-induced fission [?]. Under-
standing the instabilities present in the beam-plasma system and their consequences leads
to improved simulations and designs for ignition and combustion of fuel pellets. Therefore,
in this study, based on the kinetic description of plasma, we investigate electromagnetic
filamentation instability in the presence of density gradients and the effects of thermal
anisotropy in plasma. Then, we analytically evaluate the impact of parameters influencing
the growth rate of filamentation instability.

2 Calculation of the Theoretical Model
In the fast ignition scheme, it is assumed that a mono-energetic beam with a number density
nb and mean relativistic speed vb is propagating in a plasma with stationary background ions,
and a return current with a number density npand speed vp is generated in the opposite
direction of the beam while maintaining charge neutrality and electric current balance,
leading to the relation nbvb = npvp A relativistic electron beam propagates from a plasma
halo with a density of ne ∼ 1021cm−3 toward the center of a deuterium-tritium fuel pellet
with a density of ne ∼ 1025cm−3 Since the center of the fuel pellet is approximately four
times denser than the halo at the edge of the pellet, the electron beam encounters a density
gradient and is subjected to an unstable system [11,12]. Consequently, the energy transfer
of the electron beams in the plasma will depend on the density gradient.

The plasma electron density ne at the critical surface is equal to n0, which is the lowest
plasma density: ne (z = 0) = n0 = 1021cm−3 As one moves away from the critical surface
towards the center of the fuel disk, ne increases beyond its critical value, reaching its max-
imum at the center of the disk, denoted as ne (z = c) = nc = 1025cm−3 The characteristic
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length scale of density gradient (λ) can be expressed as; λ = ne
dne
dz

= ze
ln ne

n0

and the electron
density, as a function of position, is given by; ne (z) = n0e

z
λ Since changes in electron den-

sity lead to changes in medium temperature; Te (z) =
n2
0(z)Te0

n2
e

[13,14], the plasma thermal
anisotropy, which is due to the density gradient, can be investigated in the filamentary
instability. In order to study the factors affecting the growth rate of the filamentation
electromagnetic instability, it is assumed that the electron number density of the medium
changes along the z axis, and the incoming electron beam moves along the density gradient
from the outer region of the fuel pellet towards the center of the Deuterium-Tritium (DT)
fuel pellet. Based on the kinetic model describing the plasma medium and combining the
Maxwell-Wallace equations, the dispersion relation can be extracted. Then, by solving the
dispersion relation, the growth rate of the filamentation electromagnetic instability can be
calculated. The beam particle distribution function in the presence of the gradient density
scale parameter η =

n2
0

n2
p(z)

has been chosen as a Maxwell-Delta distribution to express the
non-relativistic nature of the return current electrons and also the relativistic nature of the
high-energy electrons in the beam [15]
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In the Maxwellian distribution, η and T represent the density and temperature of the plasma
environment, respectively, m and v represent the particle mass and velocity, respectively.vz
and vb represent the velocities of the background particles and beam particles, respectively.
The distribution function governing the plasma particles will be expressed as follows:
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The thermal spread is in the perpendicular and parallel directions and is defined as:
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Considering the Maxwell equations governing the electromagnetic fields of the medium,
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The Vlasov equation governing plasma particles is given by:

∂f
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In equation (7), the parameter f represents the distribution function governing the plasma
particles, and is defined as a combination of the equilibrium distributionf0 (−→v )and the per-
turbation f1 (

−→r , t); f1 (−→v ,−→r , t) = f0 (
−→v ) + f1 (

−→r , t) m0 denotes the rest mass of the elec-
tron; γ is the relativistic mass factor; −→E and −→

B represent the electromagnetic fields in the



328 Mohammad Mahdavi∗ et al.

non-magnetized plasma medium and are defined as:−→E =
−→
E 0 + δ

−→
E and −→

B =
−→
B 0 + δ

−→
Bwhere

δ
−→
E and δ

−→
B are the perturbative electric and magnetic fields, respectively, and are denoted

as −→
E 1 and −→

B 1Considering the propagation direction of the beam in the plasma along the
x̂− axis,

(−→
k = kx̂

)
and the electric field direction along the ẑ− axis,

(−→
E = E1êz

)
we use

Maxwell’s equations to express the magnetic field B as: −→B1 = − ck
w E1êy . Taking into account

the perturbative fields and the distribution function, f is expressed as:f1 (−→r , t) ∝ e
i
(−→
k .−→r −wt

)
where k indicates the wave propagation direction and w represents the oscillation frequency.
The current density is given by;−→J = −nee

∫
vzf1d

3vêz The current density is perpendicular
to the beam direction, therefore it only has a z-component. The general dispersion relation
governing the plasma-beam interaction can be derived by combining Maxwell’s equations
with the Vlasov equation, leading to a comprehensive understanding of wave dynamics in
this context;
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In equation (8), f0p and f0b represent the equilibrium distribution functions governing the
plasma and beam, respectively. Since the electron number density of the beam is much
smaller than that of the return current, the dynamics governing the plasma return current
and the beam flow are considered in the non-relativistic regime. By substituting the dis-
tribution functions of the beam and plasma into the dispersion relation (equation (8)) and
calculating the integrals involved, the dispersion relation can be rewritten as follows:
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In this relation, T represents the thermal temperature of the electrons, while z (ξ) and z (ξ′)
denote the dispersion functions for the plasma and the beam, respectively, and are defined
as follows:

z (ξ) =
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.
To solve the dispersion relation, it is necessary to consider appropriate boundary condi-

tions for the dispersion variables of the plasma and the beam. Therefore, we will have the
boundary condition |ξ| ≪ 1 for the short wavelength limit, and |ξ| ≫ 1 for the long one.
For the plasma, we have the following expression:
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ξ − 1
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,

(11)
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and for the beam:
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+ · · ·
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Considering the characteristics of the unstable modes in the short wavelength limits |ξ| ≪ 1
and |ξ′| ≪ 1 terms with second-order and higher powers of ξ can be neglected. Thus, the
final form of the dispersion relation for short wavelengths is obtained as follows:
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In this expression, the frequency of the beam electrons, wb , is given by: wb =
√

nbe2

ε0m0γ

For the non-relativistic case, we have: w′
b = wb.γ

1
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√
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To calculate the growth

rate, it is necessary to consider the frequency as complex; that is; w = wr + iwm where the
imaginary part of the frequency represents the growth rate of the electromagnetic instability
of the filamentation. By substituting the complex frequency into the dispersion relation and
separating the imaginary part of the frequency, we obtain:
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Here, β =

(
Tp
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represents the thermal anisotropy ratio for the plasma, while β′ =

(
T b
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)
denotes the thermal anisotropy ratio for the beam. Additionally, vpth.⊥ =

(
Tp
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) 1
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the thermal velocity.

3 Analysis of Results
In this section, the effects of the parameters influencing the growth rate of electromagnetic
filamentation instability will be examined. Based on the growth rate relation calculated in
equation (14), the variations of the normalized growth rate of filamentation w

wb
as a function

of the normalized light frequency kc
wb

are presented for different density gradient values, while
keeping the anisotropy ratio and relativistic mass factor constant, as shown in Figure (1-a). It
was observed that with increasing the density gradient, the growth rate of the filamentation
instability decreased due to the increase in the collision rate of the beam with the fuel pellet
plasma particles and the transfer of energy from the beam particles to the plasma medium.
The spatial variation in plasma particle density enhances collisions between electron beam
particles and plasma particles. As the collision rate increases, a greater portion of the beam
particles’ kinetic energy is transferred to the plasma, resulting in significant energy loss of
the electron beam. This energy transfer from beam to plasma acts as an effective damping
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mechanism that suppresses instability-driving oscillations, thereby reducing the instability
growth rate. The decreasing effect of the plasma density gradient on the maximum growth
rate of instability is clearly evident in Figure (1-b).

Figure 1: (a)The variations of the normalized growth rate of filamentation instability
(

w
wb

)
as a function of the normalized light frequency

(
kc
wb

)
for different values of the density

gradient, with a thermal anisotropy ratio of β = 2 and a relativistic mass factor of γ = 3.
(b) The variations of the normalized maximum growth rate of instability as a function of
the plasma density gradient.

To investigate the impact of the relativistic mass factor, Figure (2-a) presents the vari-
ations of the normalized growth rate of filamentation instability as a function of the nor-
malized light frequency for different relativistic mass factors while maintaining constant
values for the density gradient and anisotropy ratio. Results show that with increasing the
relativistic mass factor, the growth rate also shows an increasing trend as a result of the
increase in internal energy. As the internal energy of particles increases, oscillations grow
with greater speed and intensity, leading to an increase in the instability growth rate. This
trend of increasing maximum growth rate with changes in relativistic mass factor is clearly
visible in Figure (2-b).

Similarly, to study the effect of the thermal anisotropy fraction on the growth rate of
filamentation instability, the changes in the normalized filamentation instability growth rate
in terms of the normalized light frequency for different anisotropy fractions and constant
values of the density gradient and relativistic mass factor have been presented in Figure
(3-a). It can be seen that an increase in the thermal anisotropy ratio leads to an increase
in the growth rate of instability due to the thermal dispersion of the plasma medium and
the increase in internal energy of the plasma particles. This trend is also evident for the
maximum growth rate, as shown in Figure (3-b).

4 Conclusions
In the process of transporting a beam of high-energy particles such as electrons to the center
of the fuel pellet, we encountered instabilities including filamentation instability. The growth
of these instabilities not only prevents the transfer of energy to the center of the fuel pellet
but also complicates the ignition process, leading to an increase in the amount of compen-
satory energy required. Utilizing the Vlasov equations and dispersion relations, the growth
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Figure 2: (a) The variations of the normalized growth rate of filamentation instability
(

w
wb

)
as a function of the normalized light frequency

(
kc
wb

)
for different values of the relativistic

mass factor, with a density gradient of η = 0.4 and a thermal anisotropy ratio of β = 2 (b)
The variations of the normalized maximum growth rate of instability as a function of the
relativistic mass factor.

Figure 3: (a) The variations of the normalized growth rate of filamentation instability
(

w
wb

)
as a function of the normalized light frequency

(
kc
wb

)
for different values of thermal anisotropy

ratios, with a density gradient of η = 0.4 and a relativistic mass factor of γ = 3. (b) The
variations of the normalized maximum growth rate of instability as a function of the thermal
anisotropy ratios.
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rate of filamentation instability was calculated. Figs. (1-3) illustrate the dependence of the
normalized growth rate on the normalized light frequency with respect to various parame-
ters affecting this instability, such as thermal anisotropy, density gradient, and relativistic
mass factor. The results indicate that the maximum growth rate of instability increases
with a decrease in the density gradient. Near the center of the fuel pellet, instabilities are
maintained over large regions of wave numbers within the system. In fact, as the density
gradient scale parameter increases, the growth rate of filamentation instability decreases due
to enhanced collision rates and energy transfer to plasma particles. Furthermore, with an
increase in both components, the relativistic mass factor and thermal anisotropy, there will
be a corresponding increase in the growth rate due to increased internal energy losses.
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