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Abstract. A well-known shear flow-driven instability, namely the Kelvin‐Helmholtz
instability (KHI), establishes important changes in the macroscopic dynamics of some
space magnetized plasmas such as the solar corona, astrophysical jets and the Earth’s
magnetopause. We use two-dimensional resistive magnetohydrodynamic (MHD) sim-
ulations to investigate the generation and dissipation of magnetic energy during KHI
in a compressible plasma with an initial uniform magnetic field parallel to the direc-
tion of streaming flow. Regardless of the resistivity value, the results show that, up to
a specific time, amplification of magnetic energy, in particular in the linear and early
nonlinear phases of KHI happens by the flow’s work on the magnetic field. This work is
mainly efficient on the boundaries of growing vortices of KHI. As the KHI proceeds into
the fully nonlinear (turbulent) phase, magnetic energy dissipation via Ohmic heating
becomes significant, and eventually balances the flow’s work, so the magnetic energy
becomes saturated. We also found that increasing the plasma resistivity weakens the
mechanism of generating magnetic energy, and may even be completely suppressed in
a highly collisional fluid.

Keywords: Kelvin-Helmholtz instability, Shear-flow, MHD simulation, Space plasma,
Plasma resistivity

1 Introduction
The relative motion of two plasma fluids separated by a thin interface layer can be unstable
to the Kelvin–Helmholtz instability (KHI; [1–3]). Rolling up of the interface and subsequent
vortex formation is a typical signature of the KHI. The KH dynamics then develop into a
nonlinear stage involving large-size vortices, and eventually, the turbulent motions appear
where vortices merge and monster vortices emerge. Strong gradients of plasma and magnetic
pressures and magnetic tension force define KHI’s primary and fundamental dynamics.

KHI is a well-known viable mechanism for momentum and energy exchange and transport
between two different plasma fluids. It is important for the understanding of space and
astrophysical phenomena involving a sheared plasma flow, such as the interaction between
the solar wind and planetary magnetospheres and ionospheres [4–9] and the structure of
cometary tails [10]. KHI has also been applied in MHD models of pulsar magnetospheres
and extragalactic radio jets [11–14]. KHI has been extensively studied in the low solar
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corona. For instance, ripples at the prominence surface [15], billows on the flank of coronal
mass ejecta [16–18] and traveling fluctuations at the boundaries of magnetic structures [19]
have been attributed to the KH instability.

Until now, KHI has been extensively studied analytically, numerically, experimentally,
and observationally by taking into account different physics, effects, and various ranges of
main parameters such as compressibility, viscosity, externally imposed magnetic field, mass
density, and temperature ratio, etc. (e.g. [20] and references therein). Nevertheless, plasma
resistivity is another main parameter determining the degree of plasma collisionality that
has gotten less attention than other effects in studying the KHI. Although, one of the major
characteristics of space and astrophysical plasmas is their low collisionality compared with
laboratory plasmas, however, there are some respective astrophysical contexts with a dense
plasma, where, quite often, the plasma is not fully ionized, so that the effect of collisions with
the neutral particles should be taken into account. Therefore, plasma resistivity is thought to
bring important changes to the dynamics of KHI and the associated MHD modes, especially
when the plasma is highly magnetized. The non-ideal effect of resistivity is the main cause
of magnetic energy dissipation via the well-known mechanism of Joule (Ohmic) heating or
dissipation in magnetized plasmas. In plasmas, an external magnetic field parallel to the
streaming flow stabilizes the KHI via the magnetic tension force [21]. Furthermore, resistive
effects are thought also to suppress the growth and even the formation of the KHI [22].
Therefore, the essential role of plasma resistivity in the dynamics of KHI deserves more
attention and study.

Some analytical works have been published regarding the resistivity effects, which inves-
tigated the corresponding effects only in the linear regime of KHI. For example, [23] have
discussed analytically the KHI of two rotating fluids. One of the fluids is conducting with
a finite resistivity, while the other is non-conducting, and the magnetic field is oblique to
the fluid interface. Based on the obtained general dispersion relation, they concluded that
a stable mode becomes overstable, and grows exponentially with the resistivity with scaling
η1/3. This conclusion, however, is in contradiction with our numerical results that generally
the growth rate even in the linear regime decreases with increasing η (see Sec. 3). However,
it should be mentioned that according to our simulation setup, both fluids are conductive
with the same resistivity, while in the study of [23], the resistivity in one of the fluids is
infinite (non-conducting fluid).

In another study, [24] studied numerically the magnetic reconnection process induced
by the KHI in resistive plasmas. They changed the value of resistivity in the limited range
as η = 0.005, 0.01, 0.05 and showed that the essential features of KHI hold almost the
same regardless of the change in the resistivity. Note that, our results indicate a significant
dependency of, at least, magnetic energy temporal evolution to the resistivity.

Furthermore, [25] investigated numerically the effects of resistivity and viscosity on the
onset and growth of the Kelvin-Helmholtz instability (KHI) in an oscillating coronal loop.
Based on MHD simulations, they concluded that increasing either viscosity or resistivity
suppresses the KHI. In other words, larger resistivity values delay the formation of the
instability and, in some cases, prevent the onset completely. This conclusion is consistent
with our results presented below.

The most similar work to our study has been presented by [26]. They have reported 2D
simulations exploring the nonlinear evolution of the Kelvin Helmholtz instability in both a
magnetized and unmagnetized shear flow. We have extended the simulations to the very
smaller values of the plasma resistivity and investigated the population of X-points and its
dependency on the plasma resistivity. Furthermore, we have addressed in more detail the
general features of a typical reconnection event occurring inside a current sheet and the
growth of plasmoid instability.
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In our current study, by varying the plasma resistivity over four orders of magnitude
with the minimum dimensionless value of η = 1.0 × 10−7, we carry out two-dimensional
resistive MHD simulations of KHI in a magnetized compressible plasma. Specifically, we
investigate the effect of resistivity on the spatial and temporal evolution of magnetic energy
and examine the mechanism of magnetic energy generation and Ohmic dissipation via the
magnetic reconnection process. To do so, the rest of the paper is structured as follows: in
the next section, the simulation setup and initial model are presented. The results are given
in Sec. 3, followed by a summary and conclusion in Sec. 4.

2 Simulation Setup
Two-dimensional MHD simulations use the PLUTO code, a publicly available numerical
code for astrophysical plasma simulations developed at the University of Turin [27]. PLUTO
solves conservative partial differential MHD equations, equation (1) including the non-ideal
effect of resistivity. It is an Eulerian, finite volume, shock-capturing code based on high-order
Godunov methods providing several integration algorithms, Riemann solvers, time-stepping
methods, and interpolation schemes. The set of single-fluid resistive MHD equations in the
conservative form to be solved numerically is

∂ρ
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+∇.(ρV) = 0,

∂m

∂t
+∇.[mV −BB+ I(P +
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2
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2
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where the generalized Ohm’s law defines the electric field, E = −V×B+ η.J with η as the
plasma resistivity tensor and the electric current density J = ∇×B. Here, the permeability
constant is set to one, µ0 = 1. We assume a uniform and the same resistivity (η) on both
sides of the interface, which is set to nine different values according to Table 1, that also
lists the corresponding dimensionless Lundquist numbers defined as S = Lx VA/η with Lx

and VA = B0/
√
ρ being the simulation box size and the Alfvèn velocity defined below.

The minimum and maximum values of resistivity in our study are η = 1.0 × 10−7 and
η = 5.0 × 10−3, respectively. This means that the corresponding maximum value of the
Lundquist number is S = 1.5 × 105. We should admit that the in situ resistivity value in
space plasmas, especially in the solar corona is far less than those achievable in numerical
simulations. Furthermore, Et = ρe + m2

2ρ + B2

2 is the total energy density with e, ρ, m
and B being the internal energy density, mass density, momentum density, m = ρV, and
magnetic field respectively. Finally, V and I are the bulk velocity of plasma and the unitary
tensor. An ideal equation of state provides the closure for MHD equations in the form
ρe = P/(Γ−1), where P and Γ are thermal pressure and the constant ratio of specific heats.
The divergence-zero constraint for the magnetic field, ∇.B = 0., is being checked by the
code at every time-step of integration of equations.

To set up the conditions for the growth of Kelvin-Helmholtz instability, the mass density
is given as ρ(y) = (ρ1+ρ2)/2+((ρ2−ρ1)/2) tanh(y/∆) with a narrow half width ∆ = 0.01,
ρ1 = 1.0 and ρ2 = 0.5. Meanwhile, as an essential condition, the plasma velocity hyperbolic
tangent profile is defined by V(y) = V0 tanh(y/∆)x̂ with V0 = 0.4. To trigger the KHI,
we perturb the system at t = 0 by setting Vy(x, y) = ϵV0 sin(kx)exp(−y2/∆) with the
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perturbation amplitude ϵ = 0.05 and KH wavenumber k = 2π/λ = 2π/0.2. The square
simulation box size in the x− y plane is x = [0, Lx] and y = [−Ly, Ly], with dimensionless
Lx = 2Ly = 1.5. Therefore, the interface layer between two fluids is set at y = 0 line parallel
to the x axis. The number of grid points is Nx = Ny = 800, so the spatial grid sizes are
∆x = ∆y = 0.0018. We have also two extra runs with larger grid points Nx = Ny = 1500. In
addition, the CFL condition determines the time step at every integration cycle. Considering
the assumption that ∆ << Ly, the density and velocity profiles are approximately step
functions. This means that for y < 0 the velocity is V(y < 0) ≈ −0.4x̂ and ρ(y < 0) ≈ 1.0,
while for y > 0 the velocity is V(y > 0) ≈ +0.4x̂ and ρ(y > 0) ≈ 0.5. Moreover, a uniform
magnetic field parallel to the streaming flow is initially imposed in the form B = B0 x̂
with B0 = 0.01, 0.1. We applied periodic and open (outflow) boundary conditions on the
boundaries in the x and y directions, respectively.

Similar to our boundary conditions on the x and y directions (parallel and perpendicular
to the flow stream, respectively), [28] have also considered the same conditions to discuss the
nonlinear evolution of Magnetic KHI in an ideal plasma. However, other type of boundary
conditions such as open on the x-direction and open or highly conductive on the y-direction
have been considered in some publications. Indeed, when the simulation box size in the
y-direction is large enough or the KHI is in the linear or early nonlinear regime, the results
are almost independent of the type of boundary condition on the y-direction.

Table 1: Values of resistivity and the Lundquist number
Resistivity (η) Lundquist Number (S = LxVA/η)
1.0× 10−7 1.5× 105

5.0× 10−7 3.0× 104

1.0× 10−6 1.5× 104

5.0× 10−6 3.0× 103

1.0× 10−5 1.5× 103

1.0× 10−4 1.5× 102

5.0× 10−4 3.0× 101

1.0× 10−3 1.5× 101

5.0× 10−3 3.0× 100

3 SIMULATION RESULTS and DISCUSSION
Considering the initial profiles, parameters, and simulation setup, we now run the 2D MHD
PLUTO code to study the resistive KHI in a magnetized compressible plasma. The main
focus is mostly on the magnetic energy features of KHI. Figure 1 plots the spatiotemporal
variation of magnetic flux contours, ψ, defined by B = ∇ × (ψẑ), in the x − y plane for
three values of plasma resistivity η = 1.0×10−5, 5.0×10−4, 5.0×10−3 with the same initial
magnetic field B(0) = B0x̂ = 0.01x̂. In the absence of initial perpendicular components V (0)

z

and B
(0)
z , the corresponding perturbed components B(1)

z and V
(1)
z cannot be generated.

According to Figure 1, for all cases of η, magnetic field lines are gradually deformed from
the initial parallel configuration by the KHI, and deformation increases as the KHI proceeds
to the nonlinear regime. For comparison, for the case of minimum value, η = 1.0 × 10−5

magnetic field lines are highly distorted, Figure 1(j), compared with the case of maximum
value η = 5.0× 10−3, Figure 1(l). The extent of deformation can be equivalently monitored
by calculating the electric current density which measures the amount of magnetic field
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Figure 1: Contours of magnetic flux function, ψ, at different times for η = 1.0 × 10−5(left
column); η = 5.0× 10−4(middle column); η = 5.0× 10−3(right column).
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circulation at each point according to Ampere’s law, J = ∇ × B. Since, ∂/∂z = 0, (i.e.,
2D simulation), the only generated current density component is Jz, the perpendicular one.
In Figure 2 we explore the absolute value of current density averaged over the simulation
domain, J̃z = (

∑
|Jz(x, y)|)/(NxNy), which indicates that J̃z increases with the evolution

of KHI and its magnitude is larger for a lower resistivity, which verifies that the resistivity
suppresses the evolution of magnetic file lines.

Figure 2: Time variation of the average of the absolute value of current density over simu-
lation domain, J̃z, for different values of resistivity.

Furthermore, magnetic field lines are strongly frozen on the plasma flow in the lower
resistivity values, for which the plasma is relatively less collisional. Therefore, as the KHI
develops from a linear regime into a fully nonlinear regime (turbulent), the topology of
magnetic field lines mimics the pattern of plasma flow and KH vortices wrap up the field
lines onto themselves. However, as the resistivity increases to a larger value, the plasma
becomes more collisional, consequently, the motion of magnetic field lines decouples from
the plasma flow due to the non-ideal effect of resistivity. This means that the magnetic
field is now permitted to diffuse freely without any constraint imposed by plasma flow.
Under this condition, there is an opportunity for a magnetic reconnection phenomenon to
onset in some localized narrow regions inside the highly complex topology of magnetic field
lines. Although the essential features of plasma density and velocity remain almost similar
regardless of the change in resistivity (see the density continuity equation), the associated
spatio-temporal evolution of the magnetic field is considerably affected by the increase of
resistivity, which can be visually seen from Figure 1.

To examine the effect of finite uniform plasma resistivity on the temporal variation of
magnetic field and its corresponding energy during the KHI, we show the time variation of
total perturbed magnetic energy, E(1)

mag = Etot
mag −E

(0)
mag, for seven different values of plasma

resistivity in Figure 3. Here, time and magnetic energy are normalized to the characteristic
Alfvén time, τA = Lx/VA = Lx

√
ρ
(0)
max/B0, and total energy of the system at t = 0.,

Et(t = 0), respectively, with ρ(0)max = 1.0 and B0 = 0.01. According to Figure 3, for all cases
of resistivity, three distinct phases can be observed; in the very early times of instability
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which corresponds to the linear phase, the perturbed magnetic field is generated, and so
the corresponding magnetic energy grows with time very fast, however, duration of the
linear regime is very short. Then as the instability develops into the nonlinear phase, the
growth rate naturally decreases remarkably but is still positive. Eventually, the magnetic
energy increase saturates at a specific time, ts(η). Saturation results from a balance between
magnetic energy production and dissipation mechanisms during the KHI. Note that, the
decrease of magnetic energy at very late times of simulation is attributed to the outflow of
magnetic energy from the up, y = +Ly, and down, y = −Ly, open boundaries following the
formation of giant vortices with the sizes on the order of simulation box. Our attention is
focused on the physics of KHI happening at relatively small time scales when the results are
independent of the up and down boundary condition.

Figure 3: Temporal variation of the normalized perturbed magnetic energy for different
values of the plasma resistivity (color online).

Here, three points can be visually inferred from Figure 3; First: the growth rate of
magnetic energy, calculated from the slope of curves seems to be almost independent of the
resistivity in either the linear or early nonlinear regimes. Second: The final saturated value
of magnetic energy is higher in the case of smaller resistivity. So the maximum perturbed
magnetic energy for η = 1.0 × 10−7 (minimum resistivity) is almost 40 times greater than
that for the case η = 1.0 × 10−3. In addition, for the case of minimum resistivity, the
perturbed magnetic energy increases even up to four orders of magnitude. In other words,
as the plasma becomes more collisional, the process for generating magnetic field during the
KHI becomes weaker. It can be concluded that, for a strongly collisional magnetized KH
instability, the corresponding mechanism for generating magnetic field can be completely
suppressed. Third: saturation happens early on as the resistivity increases. For example
ts(ηmax)/ts(ηmin) ≈ 1.5. The final point to note here is that for smaller resistivities less
than η = 5.0 × 10−6, the temporal behaviour of perturbed magnetic energy is similar. In
particular, in the linear and early nonlinear regimes there is no seen any differences.

Figure 4 plots the saturated value of the perturbed magnetic energy versus the Lundquist
number, S, for two values of the initial magnetic field. The perturbed magnetic field is
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Figure 4: The normalized perturbed magnetic energy (R) versus the Lundquist number S
for two values of the initial magnetic field.

normalized to the initial magnetic energy of the system. According to Figure 4, for both
curves, as the Lundquist number, S, increases (resistivity decreases), the perturbed magnetic
energy increases until it becomes saturated. However, the saturation value for B0 = 0.01 is
almost two orders of magnitude larger than the case of B0 = 0.1. The linear dependency
between the perturbed magnetic energy and the Lundquist number, S, at small values of S
(or larger values of resistivity) can be inferred.

Now, let us investigate in more detail the generation mechanism of magnetic energy and
its dependence on resistivity. To do so, for the case of η = 5.0× 10−4, Figure 5 presents the
temporal variation of the following four terms of the induction equation integrated over 2D
spatial domain and time. Equation (2) is simply derived from the generalized Ohm’s law
inserted into Faraday’s equation:∫ ∫

∆(
B2

2
)dxdy︸ ︷︷ ︸

term 1

=

∫ t

0

∫ Ly

−Ly

∫ Lx

0

−∇.[B× (V ×B)]︸ ︷︷ ︸
term 2

−V.J×B︸ ︷︷ ︸
term 3

−B.∇× (ηJ)︸ ︷︷ ︸
term 4

 dxdydt. (2)

We emphasize that all terms include integration over time and 2D space, and are normalized
to the total magnetic energy at initial time, Emag(t = 0.) in the plot of Figure 5. We name
the terms 1 to 4, as the “total perturbed magnetic energy”, “convection”, “flow’s work on the
magnetic field” and “resistive” terms, respectively. The “convection” term determines the
amount of magnetic energy leaving the plasma volume by the convection motion of plasma
(magnetic energy flux). The third term, −V.J×B is the conversion rate of kinetic energy
to magnetic energy via a work done by flow on the magnetic field.
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Figure 5: Temporal variation of different terms of the induction equation, Equation (1)
(color online).

Terms 2 and 3, both represent the convection process, but as will be shown below in
Figure 5, the contribution made by term 3 to the generation of magnetic energy is significant,
therefore the appropriate name “flow’s work on the magnetic field” is chosen. According
to Figure 5, the “flow’s work on the magnetic field” term (blue curve) is positive for the
entire time duration of the simulation. From the very beginning of KHI, the flow works on
the magnetic field and up to the short time t/τA ∼ 0.005, the corresponding term, term 3,
increases linearly fast from zero to ∼ 10−4. Then, as the KHI transits into the nonlinear
regime, the growth rate slows considerably until it becomes saturated at a magnitude ∼
10−2. A comparison of this term with the temporal variation of perturbed magnetic energy
(black curve) demonstrates that the work done by the flow on the magnetic field is the
main mechanism for the generation of magnetic fields and magnetic energy. Opposite this,
the “resistivity” term (green curve) is always negative, which means that it continuously
dissipates part of magnetic energy via Joule (Ohmic) dissipation. As time goes on, the
magnitude of resistive dissipation also increases. However, the amplification of magnetic
energy by the work of flow always dominates the dissipation due to the resistivity effect.
Both the amplification and the resistive dissipation become saturated at very late times of
instability. This scenario of competition between amplification and dissipation agents, also
explains the temporal variation of total perturbed magnetic energy already shown in Figure
3. Note that the magnitude of the “convection” term (term 2) highlighted in red color is
almost three orders of magnitude smaller.

As the KHI develops, magnetic field lines are rolled up by flow vortexes, which leads
to strong spatial gradients. So strong electric current densities are generated in elongated
narrow layers, especially in regions where magnetic reconnection occurs. Thus, one expects
an efficient process for generating the magnetic field as the KHI proceeds. Furthermore, for
a larger resistivity value, the dissipation is basically stronger, leading to an earlier saturation
of magnetic energy production by the work of flow. In our simulations when the resistivity
increases from the minimum value of η = 1.0× 10−7 to the maximum value 5.0× 10−3, the
saturation of magnetic energy occurs at relatively earlier times (see Figure 3).

To find out more about the mechanism of magnetic field amplification, Figure 6(a,d,g)
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plots the integrand of the term which represents the work done by plasma flow on the
magnetic field, -V(x,y).(J(x,y) × B(x,y)), in three instants. The magnetic field generation
is more efficient on the boundaries of growing KH vortices for a long time, where according
to Figure 6(b,e,h) at these regions the current density, Jz(x, y) is also significant. This
matching can be seen clearly from Figure 6(c,f, i), in particular, in the early times of KHI,
which presents the magnitude of Jz and −V.J × B on the interface line (y = Ly/2). The
similarity between the pattern of these terms indicates that the amplification is stronger
at the locations where the electric current density is significant there. Therefore, on the
boundaries of KH vortices, the magnitude of the perturbed magnetic field and its gradient
are significant as expected.

Figure 6: Variation of the term,(−V.J×B), and Jz in the x− y plane (color online).

On the other hand, the main magnetic energy dissipation regions are those with signif-
icant localized current densities. Figure 7 depicts the spatial variation of dissipation rate
ηJ2

z at three times. As seen, the boundaries of vortices are the main regions of magnetic
energy dissipation. Interestingly, the generation of magnetic energy is also significant at
these locations. In some of these regions, conditions for the magnetic reconnection phe-
nomenon are satisfied, where magnetic energy is converted to other forms of energy such
as kinetic energy of plasma. The X-points are the null points where magnetic reconnection
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Figure 7: Variation of resistive dissipation rate, ηJ2
z , in the x− y plane for η = 5.0× 10−4

at three times (color online).

occurs, and it is expected to observe many of them in the highly complicated configuration
of magnetic field lines in the nonlinear regime of KHI. More X-points means more dissipa-
tion of magnetic energy via Joule heating. Within the highly turbulent structure of each
giant vortice of KHI, one can detect some weak and highly transient reconnection events on
very small scales which makes it difficult to count properly and accurately the number of
formed X-points. The number of X-points, however varies with time and more importantly,
the value of resistivity. To compare the dependency of X-point population on the plasma
resistivity, we decided to count the X-points that appear clearly for a longer period on the
spatial region where two monster vortices merge with opposite magnetic fields.

Figure 8: The normalized perturbed magnetic energy (R) versus the Lundquist number S
for four values of the initial shear flow velocity V0.

Our numerical simulation has three main parameters besides the plasma resistivity. First:
The magnitude of initial shear flow velocity, V0. Definitely, as the shear flow velocity de-
creases (increases), we expect a smaller (larger) growth rate of instability. We varied it to
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be V0 = 0.1, 0.3, 0.4, 0.6. Figure 8 plots the variation of the total perturbed magnetic energy
normalized by the initial magnetic energy versus the Lundquist number (S) for different
values of V0. As expected, by increasing the magnitude of shear flow velocity, the instability
grows faster and transits in a relatively shorter time scale from the linear to the nonlin-
ear regime. Although, for all cases, we observe a saturation phase in larger values of the
Lundquist number (smaller resistivity), however, for the case with a larger shear flow veloc-
ity, the magnitude of perturbed magnetic energy is relatively larger. One can conclude that
regardless of the resistivity value (or the Lundquist number), the resistive Kelvin-Helmholtz
instability with a larger initial shear flow velocity results in a stronger instability, and the
amplification of the magnetic field is also stronger.

Figure 9: The normalized perturbed magnetic energy (R) versus the Lundquist number S
for four values of the perturbation ϵ.

The second parameter is the amplitude of the initial perturbation (ϵ) perpendicular
to the initial streaming. We examine four cases of ϵ = 0.01, 0.05, 0.1, 0.2. Figure 9 plots
the variation of the total perturbed magnetic energy normalized by the initial magnetic
energy versus the Lundquist number (S) for different values of ϵ. As expected, by increasing
the perturbation amplitude, the instability grows faster and transits in a relatively shorter
time scale from the linear to the nonlinear regime. Although, for all cases, we observe a
saturation phase in larger values of the Lundquist number (smaller resistivity), however, for
the case with a larger perturbation amplitude, the magnitude of perturbed magnetic energy
is relatively larger. We conclude that regardless of the resistivity value (or the Lundquist
number), the resistive Kelvin-Helmholtz instability with a larger initial perturbation results
in a stronger instability, and the amplification of the magnetic field is also stronger.

The last main parameter is the magnitude of the initial uniform magnetic field, B0. We
discuss the analysis for four cases of B0 = 0.001, 0.01, 0.1, 0.5. Therefore, Figure 10 plots the
variation of the total perturbed magnetic energy normalized by the initial magnetic energy
versus the Lundquist number (S) for four different values of B0. Larger values of the initial
magnetic field, As described within the manuscript, larger values of the initial magnetic
field, suppress the KHI and decrease the growth rate of instability. As a result, we expect
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Figure 10: The normalized perturbed magnetic energy (R) versus the Lundquist number S
for four values of the initial magnetic field B0.

a weaker amplification of magnetic energy. This point can be seen clearly in Figure 10.
However, the magnitudes of amplification for cases B0 = 0.001 and 0.01 (smaller cases) are
similar. Such a behavior is seen in larger cases of B0 = 0.1 and 0.5.

4 SUMMARY AND CONCLUSION
Two-dimensional MHD numerical simulations are carried out to investigate the effect of finite
uniform plasma resistivity on the Kelvin-Helmholtz instability in a magnetized compressible
plasma. The main purpose was to study the spatio-temporal evolution of magnetic energy
by varying plasma resistivity. To do so, we considered nine different values for plasma
resistivity starting from η = 1.0× 10−7 and increasing up to four orders of magnitude.

We found that as the KHI proceeds, the magnitude of perturbed magnetic energy in-
creases with time until the saturation is achieved. The amplification of the magnetic field
occurs very fast, in particular, in the linear regime. For example, for the case of η = 1.0×10−5

the perturbed magnetic energy is almost 30 times greater than the initial magnetic energy
of the system, R ≡ E

(1)
mag/E

(0)
mag ≈ 30 during saturation phase. This represents a powerful

amplification with an efficient respective mechanism. It should be noted that such strong
amplifications depend on the amplitudes of initial velocity parallel to the interface, V0, and
the y-component perturbation velocity, ϵV0. Therefore weak (V0 << 1) or strong (V0 ∼ 1)
initial shear flows, weak (ϵ <∼ 0.001) or strong (∼ 0.1 < ϵ <∼ 0.5) perturbations would
bring some changes at least to the numbers. In this study, we report the results with medium
values of V0 = 0.4 and ϵ = 0.05. Nevertheless, observing numerically, such a considerable
magnetic field amplification within short time scales with the medium values of parameters
is promising.

Figure 4 plots the values of R versus S for two values of the magnetic field, B0 = 0.01
and 0.1. For a smaller initial magnetic field, B0 = 0.01, the amplification is also stronger
than the case B0 = 0.1. According to Figure 4, as the Lundquist number increases (resis-
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tivity decreases), the value of R increases almost linearly in logarithmic axes for both cases
B0 = 0.01 and 0.1. In other words, for a less collisional KHI, the amplification of magnetic
field, and so magnetic energy is considerably strong. Contrary to this, in a collisional plasma
the amplification is relatively weak. Therefore, in some relevant space and astrophysical col-
lisionless plasmas, one can expect strong magnetic energy amplification during the possible
KHI. Understanding the main mechanisms of stable magnetic field production in astrophys-
ical plasmas is still an open question. Since, the conditions for triggering KHI on a small or
large scale can be easily satisfied in many space and astrophysical environments, our findings
can be interesting. In essentially collisional laboratory plasmas, however, the amplification
of magnetic field under the KHI is not considerable, and so it is not an important point
of discussion. We note that the saturation of magnetic field amplification occurs relatively
earlier for collisional plasmas.

Furthermore, we conclude that the work done by the plasma flow on the magnetic field is
responsible for generating magnetic field during the KHI. Although, the flow’s work on the
field is in charge of magnetic energy production, on the other hand, plasma resistivity results
in the dissipation of magnetic energy via Joule dissipation and its consequent conversion to
other forms of energy. This dissipation essentially works in the regions where magnetic
reconnection happens. In fact, following the fully nonlinear regime of KHI, the basic con-
ditions for the magnetic reconnection process may appear temporarily in the compressed
current sheets at the edges of the vortex rolls up and within the vortices. Both types I and
II (discussed in the Introduction section) of magnetic reconnection during KHI are observed.
We know that for a single magnetic reconnection process, the amount of magnetic energy re-
leased via the Joule heating increases naturally as the resistivity increases. However, during
the magnetized KHI, as the resistivity increases, the results show that the growth of KHI
decreases. As a result, the deformation of magnetic field lines from their initial straight-line
configuration to complicated rolled-up field lines also decreases. This means that the system
becomes less turbulent and the current sheets with opposite magnetic field lines where the
reconnection occurs would appear rarely. Finally but interestingly, we observed the forma-
tion, merging, and eventually vanishing of a double current sheet, or a double tearing mode,
for which the energy dissipation rate is relatively higher. The turbulent magnetic recon-
nection phenomenon during fully nonlinear KHI is still under investigation by researchers.
However, in this study, we also investigated the general features of magnetic reconnection
occurring in a specified current sheet. The temporal variation of the extent of asymmetry
of magnetic field strength, the length-to-with ratio and reconnection rate are addressed.

In this study, we aimed to shed more light on the spatial and temporal evolution of
magnetic energy and tried to discuss the main mechanism of magnetic energy amplification.
Of course, there is still a need to consider the effect of varying some other parameters of
KHI as mentioned. In our future study, we will investigate the amplification of magnetic
energy on small scales and the role of magnetic reconnection in dissipating the energy by
using particle-in-cell (PIC) simulations.
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