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Abstract. In [1], we have found that the curved spacetime version of the vacuum
stress between conducting plates was first done in flat spacetime by Brown and Maclay.
Here, we calculate the energy-momentum tensor for the Casimir effect of parallel plates
under Neumann boundary conditions to support our recent results found in [2]. We use
direct calculation of energy-momentum tensor by employing the well understood point
splitting method of regularization, and we show that the there is first order correction
to the Casimir energy in curved spacetime proportional to GM

c2R
where R and M are the

radius and the mass of the source of gravity.

Keywords: Gavitational vacuum energy, Casimir effect, Cosmological constant problem,
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1 Introduction
The energy-momentum tensor has a crucial role in quantum field theory in curved spacetime
[3]. This is partially because of the fact that the notion of a particle (and energy) in curved
spacetime is not as clear as that in flat spacetime. In fact, in the lack of global symmetries in
curved spacetime, local quantities such as energy-momentum tensor are of crucial importance
as they are locally describe the energy through a tensorial form. The energy momentum
tensor for extended bodies have been extensively studied in classical systems. See [4] and
references therein. In the quantum side, or more exactly the semi-classical side, there are few
studies which concerns calculating the energy momentum tensor of an extended body other
than a black hole. One of quantum energy momentum tensors which have been investigated
in a curved background is the Casimir effect of parallel plates [5–8]. The importance of the
subject is related to an old question that whether the quantum vacuum can describe the
origin of the cosmological constant or not? There are many investigations which concern the
possible relationship between the zero point energy of a quantum field to the cosmological
constant appears in Einstein field equations [10]. The discrepancy between the obtained
zero point energy and the current estimated cosmological constant is called the cosmological
constant problem (CCP) [11,12].

In fact, the reaction of a gravitational system to the quantum vacuum of Casimir effect
can be a good example to seek the answer to the question. The author has shown [2,9] that
the Casimir energy of parallel plates has a first order correction proportional to GM

c2R which
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is many orders of magnitude greater than previous results obtained by others. In [2], we
found such a result using a different approach of quasi-local stress tensor formalism. In this
work, by direct calculation of the energy-momentum tensor, we provide strong support to
the result under the influence of Neumann boundary condition (NBC). From electromagnetic
theory we know that the electric field which is the derivative of the potential (a scalar field)
vanishes on a metal boundary. Therefore, although the related calculations for the NBC are
typically more complicated, the NBC sounds more physical than the Dirichlet one for the
case of the scalar field.

The structure of the paper is as follows. In section 2, we review the point splitting method
first introduced by Christensen [13]. In section 3, we apply the Neumann B.C. and find the
suitable wave function for the scalar field as well as the non-vanishing energy momentum
tensor components. In section 4, the energy has been found for the static spacetime we have
considered in this work. Conclusion is the final section.

2 The energy-momentum tensor
According to Christensen [13], after employing the point-splitting method of regularization,
the energy-momentum tensor for a scalar field in arbitrary spacetime is given by

⟨Tµν⟩ = lim
x′→x

[
(1− 2ξ)

4

(
G

(1)
;µ′ν +G

(1)
;µν′

)
+

(
ξ − 1

4

)
gµνG

(1) σ′

; σ

− ξ

2

(
G(1)

;µν +G
(1)
;µ′ν′

)
+

ξ

8
gµν

(
G(1) σ

; σ +G
(1) σ′

; σ′

)
+

ξ

2
GµνG

(1)

+
3

4
ξ2RgµνG

(1) +
3ξ − 1

4
m2gµνG

(1)

]
, (1)

where
G(1)(x, x′) = ⟨[ϕ(x), ϕ(x′)]+⟩ = 2Im GF , (2)

is the Hadamard function and µ′ denotes differentiation with respect to x′. GF is the
Feynmann function which satisfies the Klein-Gordon equation

(□− ξR)GF (x, x́) = −δ(x, x́)√
−g

. (3)

We assume that the Casimir parallel plates are separated by small distance l. Thus, it can
be shown [8] that any general static spacetime can be expanded in the space between the
plates as follows

ds2 = (1 + 2γ0 + 2λ0z)dt
2 − (1 + 2γ1 + 2λ1z)

(
dx2 + dy2 + dz2

)
, (4)

in which γ0 = −γ1 = −Gm
c2R << 1, λ0z = −λ1z = Gm

c2R2 z << 1 [8].
The general form of the symmetric green function GF has been found to be [1]

G(z, ź) =
Y1(z)Y2(ź)

W (ź)p0(ź)
, z < ź, (5)

in which

Y (z) = D0

(
1− (

λ

2
+

a

4b
)z

)
sin

(√
bz(1 +

a

4b
z) + Θ0

)
. (6)

The Θ0 should be found by imposition of boundary conditions and D0 from commutation
relations on wave function. Note that for z > ź it suffices to do the interchange z ↔ ź in
the nominator of the equation (5). However, at the limit ź → z we do not need the part of
the Green function for z > ź.
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3 The Neumann boundary conditions
The Neumann boundary condition on plates at z = 0, z = l is defined by

∂zGF (z, z
′)|z=0,l = 0, (7)

which in turn gives

∂zY1(0) = 0, ∂zY2(l) = 0, (8)

on account of (5).
Upon imposition of (8) on (6) we find

Y1(z) =

(
1− (

λ

2
+

a

4b
)z

)
sin (S(z) + 2δ0) , z < ź, (9a)

Y2(z) =

(
1− (

λ

2
+

a

4b
)z

)
sin (S(z)− S(l) + 2δ0) , ź < z, (9b)

in which

S(z) =
√
b
(
z +

a

4b
z2
)
, δ0 =

ϵ√
b
+

π

2
. (10)

We keep only those terms which are within second order perturbations in terms of the
parameters λ0, λ1, γ0, γ1. Therefore, the Green function is found to be

z < ź :

gF (z, ź) =
1− γ0 − γ1 − λ(z + z′)

2
√
b sin(

√
bl)

{
− cos(

√
bα)− cos(

√
bβ) +

a

4
√
b
×(

(z2 − ź2 + l2) sin(
√
bβ) + (z2 + ź2 − l2) sin(

√
bα) + l2 cot(

√
bl) cos(

√
bα)

)}
,

(11)

where

α = z + ź −l, β = z − ź + l = ∆z + l, (12)

and

GF (x, x́) =
∫

dωdk⊥
(2π)3 gF (z, ź)e

−iω(t−t́)+k⃗⊥.(x⃗−´⃗x). (13)

Using the equations (1), (2), and (13), after a very long and tricky calculation [1] we find
the Tµν components as follows:

⟨T00⟩ =
E0

l

(
1 + 2γ0 − 4γ1 +

2

5
λ0(3l − z)− 2

5
λ1(3l + 4z)

)
+

c0
(∆z)4

+
B

90π2

[
+ 8zA1(α)− l2A2(α) + (2z2 − l2)A3(α)− 5A4(α)

]
+

1

12π2
(ξ − 1

6
)

[
− 6 (1 + 2γ0 − 4γ1 − 2λ1z)A1(α)−Bl2A2(α) + (2z2 − l2)B A3(α)

+ 2(4λ1 + 5λ0)A4(α)

]
,

(14)
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⟨T11⟩ = ⟨T22⟩ =−
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2

5
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5
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l
+
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(∆z)4
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180 π2

[
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]
+

1

12π2
(ξ − 1

6
)

[
+ 6 (1− 2γ1 − 2λ0z)A1(α) +Bl2A2(α)

− (2z2 − l2)BA3(α)− 2(2λ0 + 7λ1)A4(α)

]
,

(15)

⟨T33⟩ =
3E0

l

(
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2

3
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2

3
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(∆z)4
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6
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1
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(16)

where

c0 = − 1

2π2

[
1 + 2γ0 − 4γ1 −

2

5
(λ0 + 4λ1)z

]
, (17)

c1 =
1

2π2

(
1− 2γ1 −

2

5
(2λ0 + 3λ1)z

)
, (18)

c2 = − 3

2π2

(
1− 2γ1 −

2

3
(2λ0 + λ1)z

)
, (19)

and

A1(α) =

∫ ∞

0

κ3 cosh(κα)

sinhκl
dκ, (20a)

A2(α) =

∫ ∞

0

κ4 cosh(κα) cosh(κl)

sinh2 κl
dκ, (20b)

A3(α) =

∫ ∞

0

κ4 sinh(κα)

sinhκl
dκ, (20c)

A4(α) =

∫ ∞

0

κ2 sinh(κα)

sinhκl
dκ, (20d)

and E0 = −π2/1440l4 is the Casimir energy in flat spacetime. For a brief review of the main
steps led to the above results see appendix A.

4 The Energy and Pressure
The volume energy in a static spacetime is given by [2]

E =

∫
< 0|T 0

ν |0 > ζν
√
−gd3x, (21)

in which ζµ is the corresponding Killing vector. We show that only the first line of (14)
contributes the energy upon integration on z. By assuming ζµ = δ0µ for a typical static
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spacetime, we first consider the second line of (14) which can be written as

E =A

∫ l

0

(1− γ0 + 3γ1 + (3λ1 − λ0)z) ⟨T00⟩

=
E0

l
A

∫ l

0

(
1 + γ0 − γ1 + (3λ1 − λ0)z +

2

5
λ0(3l − z)− 2

5
λ1(3l + 4z)

)
+
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(∆z)4

+
B

90π2

∫ l

0

[
+ 8zA1(α)− l2A2(α) + (2z2 − l2)A3(α)− 5A4(α)

]
+

1

12π2
(ξ − 1

6
)

∫ l

0

[
− 6 (1 + 2γ0 − 4γ1 − 2λ1z)A1(α)−Bl2A2(α) + (2z2 − l2)B A3(α)

+ 2(4λ1 + 5λ0)A4(α)

]
.

(22)

Now, using (12) and (20a)-(20d) we can easily find∫ l

0

A1(α)dz =

∫ ∞

0

κ3

sinhκl
[

∫ l

0

cosh(κα)dz]dκ = 0, (23a)∫ l

0

zA1(α)dz =

∫ ∞

0

κ3

sinhκl
[

∫ l

0

z cosh(κα)dz]dκ =
l

2

∫ ∞

0

κ2, (23b)∫ l

0

A2(α)dz = l2
∫ ∞

0

κ3dκ+
π4

120l2
, (23c)∫ l

0

A3(α)dz =
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0

κ4

sinhκl
[

∫ l

0

sinh(κα)dz]dκ = 0, (23d)∫ l

0

z2A3(α)dz =

∫ ∞

0

κ4

sinhκl
[

∫ l

0

z2 sinh(κα)dz]dκ =
l

2

∫ ∞

0

κ2 +
l2

2

∫ ∞

0

κ3 +
π4

240l2
, (23e)∫ l

0

A4(α)dz = 0. (23f)

By substituting these results back into (22), we end up with

E = A

(
1 + γ0 − γ1 +

λ0 − λ1

2
l

)
E0. (24)

A point should be noted here. The divergent terms such as 1
3(∆z)n are the typical side

effects of the point separation method [14]. Therefore. in the course of integration over z,
they must be dropped away as they are boundary effects. The result (24) is exactly what
we found in [2] using the quasi-local approach to the quantum vacuum energy in curved
spacetime.

For pressure, we find the projection of < 0|Tµν |0 > on uµ = (
√
−g33)

−1δµ3 and find

P = u3u3 < 0|T33|0 >= A

(
1− 4γ1 −

4

3
(λ0 + 2λ1)z +

2(λ0 − λ1)

3
l

)
. (25)

5 Concluding Remarks
In this paper, we found strong support for our previous work [2] by direct calculation of the
energy momentum tensor for a scalar field confined in the space between two material plates
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under Neumann boundary condition. The energy momentum tensor in equations (14)-(16)
was found to be the same as that in [1] for Dirichlet boundary condition except for some
sign change in the divergent part of the Tµν , i.e. in the α-dependent part . Therefore, we
have shown that the finite part of the energy is the same for both Dirichlet and Neumann
boundary conditions. Also, we shown that the divergent part vanishes upon the integration
over z.

As the obtained Tµν shows, the flat spacetime limit (or λ0 = λ1 = γ0 = γ1 = 0) is
completely finite in the case of conformal coupling of the field, the effect that is previously
well known in the literature. Another point is that the only divergent part of the Tµν is

1
(∆z)4 for both flat and curved spacetime. This is also in agreement to the results have been
found in [14]. Thus, the curved spacetime does not alters the structure of the divergencies
relative to that of the flat spacetime.

Since we have obtained the volume energy-momentum tensor, and that there is a finite
part of the energy resides exactly on the surfaces [15], finding probable divergent terms other
than 1

(∆z)4 will be postponed to a more comprehensive study which involves the surface part
of the energy momentum tensor.

The lowest order correction to the energy was γ0 − γ1, which does not in general vanish,
and shows a first order correction to the Casimir energy. For example, in a general weak
static spacetime of the form

ds2 = (1 + 2ϕ(x))dt2 − (1− 2ϕ(x))d−→x 2, ϕ(x) << 1, (26)
we have γ0 − γ1 = 2ϕ(R) where R is the distance the plates are located at relative to the
center of the source of gravitational field. In fact, ϕ(R) is the lowest order perturbation
expansion of ϕ(x):

ϕ(x) = ϕ(R) +
dϕ(x)

dx
|x=R(x−R) + · · · , (x−R) << 1. (27)

Appendix A: brief review of the calculations
Using equations (11), it can be shown that

gF =
1

2
(N −M), (28a)

M =(1− γ0 − γ1)
cos(

√
bα)√

b sin(
√
bl)

− al2

4b

cos(
√
bα) cos(

√
bl)

sin2(
√
bl)

−
(

a

4
√
b
(z2 + z′2 − l2) +

2ϵ√
b

)
sin(

√
bα)√

b sin(
√
bl)

− 2ϵz
cos(

√
bα)√

b sin(
√
bl)

(28b)

N =− (1− γ0 − γ1)
cos(

√
bβ)√

b sin(
√
bl)

+
al2

4b

cos(
√
bβ) cos(

√
bl)

sin2(
√
bl)

+

a

4
√
b
(z2 − z′2 + l2)

sin(
√
bβ)√

b sin(
√
bl)

+ 2ϵz
cos(

√
bβ)√

b sin(
√
bl)

, (28c)

ϵ =
λ

2
+

a

4b
. (28d)

The changes
√
bα →

√
bα+ π,

a

4
√
b
(z2 + z′2 − l2) → a

4
√
b
(z2 + z′2 − l2) +

2ϵ√
b
,

(29)
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are the main differences in the course of calculations compared to that of the Dirichlet
boundary conditions.

Having the above relations in hand, we can compute the energy-momentum tensor com-
ponents. For instance, the ⟨T00⟩ component is given by [1]

⟨T00⟩ =
1

6
lim
z′→z

Im

∫
dωdk⊥
(2π)3

[
9

2
ω2 − 3

2

g00
g11

k2⊥ +
g00
4g11

(
∂2
z + ∂2

z′ − 4∂z∂z′

)
+

3λ0 − λ1

4
(∂z + ∂z′)

]
gF

+ (ξ − 1

6
) lim
z′→z

Im

∫
dωdk⊥
(2π)3

[
3

2
ω2 +

3

2

g00
g11

k2⊥ +
g00
4g11

(
(∂2

z + ∂2
z′) + 8∂z∂z′

)
+

3λ0 − λ1

4
(∂z + ∂z′)

]
gF .

(30)
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