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Abstract. In this research, an analytical expression of the Weibel electromagnetic
instability growth rate is investigated for strongly coupled plasma in the presence of
Coulomb collisions in the beam-plasma interaction under a low-frequency wave con-
dition. In this regard, the distribution function governing the relativistic beam and
plasma particles has been considered as semi-Maxwellian and Kappa distribution func-
tions respectively. The effect of the temperature anisotropy parameter, the spectral in-
dex, quantum and relativistic parameters on Weibel electromagnetic instability growth
rate have been investigated in collisional and non-collisional states.The obtained re-
sults show that the Coulomb collision frequency of particles plays an important role in
suppressing the unstable modes in isotropic plasmas due to increase in the free energy
of the plasma. Therefore, it was concluded that the Weibel instability growth rate
in collision state has a more stable situation than in the non-collisional state in the
strongly coupled plasma with Kappa distribution function.

Keywords: Weibel electromagnetic instability, Coulomb collision, Kappa distribution
function, Temperature anisotropy

1 Introduction
Classical plasma is usually characterized by a relatively small de-Broglie wavelength in the
range of low density and high temperatures. The quantum effects arise if the wavelength of
the two particles is comparable to the distance between the particles. Quantum effects play
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an important role in the dynamics of quantum plasma [1]. Quantum plasma is a system of
charged particles in which collective and quantum effects are dominant due to duality and
quantum statistics [2]. In recent years, the effect of quantum properties of plasma on phys-
ical diversity in macroscopic and microscopic samples of plasma has drawn interest towards
quantum plasma. Discussions about quantum plasma in the range of high density and low
temperature were first raised by Pines in the 1960s [3]. Quantum plasma can be seen in
various fields such as laser-solid dense experiments like in neodymium lasers, Spintronics
semiconducting nanostructures, white dwarfs and most importantly inertial confinement fu-
sion [4–8]. The Fast Ignition Scheme (FIS) is a variant of the confinement fusion process
in which a super-pulsed laser actuator 1019 w

/
cm2 is used to ignite a preconcentrated tar-

get. Weibel instability is one of the electromagnetic instabilities of plasma, which prevents
the deposition of beam energy in the fuel pellet, as a result, the energy loss in the fusion
process increases. In the following years, many research studies have included the study
of Weibel instability with non-Maxwellian distribution function for different distribution
functions including the Kappa distribution function, generalized distribution function, etc.
Growth rate changes with different distribution function parameters were also investigated
[9]. Moreover, the analysis of the quantum effect in the dense quantum plasma shows that
the quantum effect tends to stabilize the Weibel instability in the hydrodynamic regime
[10]. The study of the effect of the dense gradient on the growth rate of the relativistic
Weibel instability indicates that the growth rate of the Weibel instability increases with
the increase in gradient density. Also, the growth rate decreases with the increase of the
relativistic parameter and relativistic mass of the electron beam [11]. The effect of ion-
electron collision on the Weibel instability for dense non-magnetic anisotropic plasma with
bi- Maxwellian distribution function shows that, the growth rate of the instability increases
due to the reduction of the Coulomb collision frequency [12]. In 2007, Hans found that the
quantum effects decrease when growth rate increases; in other words, the quantum effects
play a stabilizing role [13]. Similarly, other studies were conducted on the growth rate of
Weibel instability [14–18]. Strongly coupled plasmas (or non-ideal plasmas) are charged
multicomponent systems in which the average potential energy of the system is equal to
or even higher than the average kinetic energy. Strong coupled plasma with high energy
density is necessary in projects such as magnetic flux generators, plasma generators, pow-
erful sources of light radiation and pulsed thermal reactors with confinement Inertia and
etc. The quantum coupling parameter is the ratio of the interaction energy to the aver-
age Fermi energy (gQ = Eint

EF
∼
(

ℏwp

EF

)2
). The distribution functions that are seen a lot

in natural and laboratory plasmas are non-Maxwellian distribution functions [19]. Non-
Maxwellian distribution, which is the high-energy sequence in the velocity distribution and
is caused by the presence of superheated electrons, is the Kappa distribution. In addition
to the mentioned articles, Weibel instability for non-Maxwellian distributions has also been
studied and analyzed in recent years. Among other things, in 2021, the Weibel instability
beyond the semi-Maxwell anisotropy was investigated by T. Silva and N. Rubab in 2016
[20]. Weibel instability in space plasmas was analyzed in comparison of three-particle distri-
butions with generalized kappa and bi-kappa distributions [21]. Also, other researches were
done with non-Maxwellian functions [22,23]. Until recently, research on plasma instabilities
was based on kinetic theory, relying on Maxwellian distribution functions. The existence
of non-thermal particle distributions at high altitudes in the solar wind and many space
plasmas has been widely confirmed by spacecraft [24]. The results obtained show that the
particle distribution function differs from the Maxwellian distribution. The velocities of
space plasma particles often follow kappa distribution functions with high-energy tails. The
kappa index is an important parameter in understanding plasma dynamics [25]. On the
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other hand, the accurate determination of kappa distribution functions and a wide range
of energies is very important for understanding the physical mechanisms. However, it is
very important to quantify the uncertainty of the obtained plasma mass parameters, which
determines the level of scientific results [26]. The generation of kappa distributions near the
solar wind plasma at 1 AU was investigated. A specific relationship between the properties
of solar wind plasmas, the interplanetary magnetic field and the kappa index is revealed
[27]. Solar wind modeling the energy exchange between plasma particles and low-frequency
Alfvén waves was considered. For such plasmas, the kappa distribution function is very
useful. Also, the electron velocity distribution in solar winds was investigated using the
Maxolin distribution and the kappa distribution [28]. As a result, in theoretical models to
describe waves and instabilities for natural plasmas around the Earth such as the magneto-
sphere around the Earth, space plasmas, and solar winds, the best distribution function is
the kappa distribution. In this paper, we have used the semi-Maxwell distribution function
[14] for the relativistic beam and the Kappa distribution [29] for the plasma in the beam-
plasma coupled model. We investigated the importance of the Coulomb collision effect on
the growth rate of electromagnetic Weibel instability for the beam-plasma model.

2 Observations of the Theoretical Model
The governing equation of strongly coupled plasma, considering the effect of Coulomb col-
lision between particles and using Maxwell’s equations is the following(

∂f1
∂t

)
+ v⃗.

∇⃗f1
∂−→r

+ q

(
E⃗ +

v⃗

c
× B⃗

)
.
∂f0
∂−→p

= −vei(f − f0), (1)

∇⃗ × E⃗ = − 1
c

(
∂B⃗
∂t

)
, (2)

∇⃗ × B⃗ = − 4π
c J⃗ + 1

c

(
∂E⃗
∂t

)
. (3)

In the above equations, the total electrons distribution function (f) is the sum of the equi-
librium and perturbed distribution function at position −→r , f = f0 + f1, −→P = m

−→
V is the

momentum. and vei is ion – electron Coulomb collision frequency. The quantities c,−→J ,
−→
E ,

−→
B

and −→v are the velocity of light, the current density, perturbed electric, magnetic fields and
the velocity of particles respectively.

By using the Vlasov equation with the collision term for the relativistic beam and com-
bining it with the Wigner-Maxwell function for the quantum plasma, the general linear
dispersion relation will be obtained as follows,

ω2 − c2k2 − ω2
be − πω2

be

(
k

m

)∫ ∞

−∞

∫ ∞

0

p3⊥(
ω′ − kv∥

) ∂f b
0

∂p∥
dp⊥dp∥ − ω2

pe

+
ω2
pe

2n0ℏm

∫ +∞

−∞

∫ +∞

0

p2⊥(
ω′ − kv∥

) [fp
0

(
p⊥, p∥ +

ℏk
2

)
− fp

0

(
p⊥, p∥ −

ℏk
2

)]
dp⊥dp∥

= 0. (4)

In this equation, ω and k are the frequency and wave number of wave instability, respectively;
f0 is the equilibrium dispersion function, ωpe and ωbe are the beam and plasma frequency
respectively and w′ = w + ivei = (wr + iδk) + ivei. We consider the electromagnetic wave
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propagating in the direction −→
k = kêz. The beam with semi-Maxwell distribution func-

tion, f b
0 enters the strongly coupled plasma with the Kappa three-dimensional equilibrium

distribution fp,k
0 , as follows [14, 24].

f b
0

(
p⊥, p∥

)
=

1

π
3
2

(
1

m2γ2θ2⊥b

)(
1

mγθ∥b

)(
1 +

2c2

θ2⊥b

)−1

exp

−
(
p∥ − pbd

)2
m2γ2θ2∥b

− 2c2

θ2⊥b

√
1 +

p2⊥
m2γ2c2

− 1

 , (5)

fp,K
0

(
p⊥, p∥

)
=

uk

π
3
2 θ2⊥pθ∥p

(
1 +

(
p∥ − pbd

)2
km2θ2∥p

+
p2⊥

km2θ2⊥p

)
. (6)

Here, uk = Γ(k+1)

k
3
2 Γ(k− 1

2 )
and k is the spectral index. Where γ =

(
1− v2

b

c2

)− 1
2 is relativistic

mass factor of beam electrons. In equations (5-6), pbd and ppd represent the momentum of
beam and plasma respectively. Γ is the gamma function, and θ is the thermal velocity of
the particles, which is defined as

θ2⊥,∥p =

(
2k − 3

k

)(
T⊥,∥

m

)
,

and
θ2⊥b,∥b =

2T

m
.

In order to calculate equation (4), it is necessary to calculate the necessary derivatives and
integrals in equation (4). for the beam and plasma distribution functions by introducing the
following scattering functions

ω2 − c2k2 − ω2
be

−πω2
be

+∞∫
−∞

+∞∫
0

kp3⊥
mγ

(
ω′ − kv∥

) (2
(
p∥ − pbd

)
π

3
2

(
1

m2γ2θ2⊥b

)(
1

m3γ3θ3∥b

)(
1 +

2c2

θ2⊥b

)−1
)
dp⊥dp∥

−πω2
be

+∞∫
−∞

+∞∫
0

kp3⊥
mγ

(
ω′ − kv∥

)
exp

−
(
p∥ − pbd

)2
m2γ2θ2∥b

− 2c2

θ2⊥b

√
1 +

p2⊥
m2γ2c2

− 1

dp⊥dp∥

−ω2
pe +

ω2
pe

2n0ℏm

+∞∫
−∞

+∞∫
0

p2⊥(
ω′ − kv∥

) ( uk

θ2⊥pθ∥pπ
3
2

)(
1 +

(
p∥ + ppd + ℏk

2

)2
km2θ2∥p

+
p2⊥

km2θ2⊥p

)−k−1

dp⊥dp∥

+
ω2
pe

2n0ℏm

+∞∫
−∞

+∞∫
0

p2⊥(
ω′ − kv∥

)(1 + (
p∥ + ppd − ℏk

2

)2
km2θ2∥p

+
p2⊥

km2θ2⊥p

)−k−1

dp⊥dp∥ = 0. (7)

Using the variables

ξ =
1

mγθ∥b

[
w′

k
− pbd

]
, x =

1

mγθ∥b

[
p∥ − pbd

]
,

y =
1

mθ∥p

[
p∥ + ppd ±

ℏk
2m

]
, η =

1

mθ∥p

[
w′

k
+ ppd ±

ℏk
2m

]
,
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in equation (7), the equation is corrected as follows

ω2 − c2k2 − ω2
be

−ω2
be

2

π
3
2

(
1

m2γ2θ2⊥b

)(
1

m3γ3θ3∥b

)(
1 +

2c2

θ2⊥b

)−1(
3θ6⊥bm

4γ4

2c2

[
θ2⊥b

4c2
+

c2

3θ2⊥b

+
1

2

])

×

[
−w′

k

∫ +∞

−∞

exp
(
−x2

)
(x− ξ)

dx−mγθ∥b
√
π +

pbd
mγ

∫ +∞

−∞

exp
(
−x2

)
(x− ξ)

dx

]
− w2

pe

−
mw2

peθ⊥p

8n0ℏkθ∥p

 1√
π

Γ (k)

k
1
2Γ
(
k − 1

2

) ∫ +∞

−∞

[
1 + y2

k

]
(y − η)

dy

 = 0. (8)

By introducing the following scattering function as follows,

Z (ξ) =
1√
π

∫ +∞

−∞

exp
(
−x2

)
(x− ξ)

dx, (9)

and

Z∗
k (η) =

1√
π

 Γ (k)

k
1
2Γ
(
k − 1

2

) ∫ +∞

−∞

[
1 + y2

k

]−k

(y − η)
dy

 , (10)

and placing it in equation (8), the equation is rewritten

ω2 − c2k2 − ω2
be

− ω2
be

mγθ∥b

θ2⊥b

θ2∥b

w′

k

(
1 +

2c2

θ2⊥b

)−1(
3θ2⊥bm

4γ4

c2

[
θ2⊥b

4c2
+

c2

3θ2⊥b

+
1

2

])
Z (ξ)

+w2
be

θ2⊥b

θ2∥b

(
1 +

2c2

θ2⊥b

)−1(
3θ2⊥bm

4γ4

c2

[
θ2⊥b

4c2
+

c2

3θ2⊥b

+
1

2

])

−ω2
be

θ∥b

θ2⊥b

θ2∥b

(
1 +

2c2

θ2⊥b

)−1(
3θ2⊥bm

4γ4

c2

[
θ2⊥b

4c2
+

c2

3θ2⊥b

+
1

2

])
pbd

m2γ2
Z (ξ)

−ω2
pe −

mω2
pe

8n0ℏk
θ⊥b

θ∥b
Z∗
k (η) = 0. (11)

For (ξ ≪ 1, η ≪ 1) the dispersion function Z (ξ) and (Z∗
k (η) for k=3,4,5)

Z (ξ) = −2ξ + · · ·+ i
√
π exp

(
−ξ2

)
, (12)

Z∗
3 (η) = η

(
−1.66− 0.370η2 − · · ·

)
+ i
(
1.539− 1.539η2 + · · ·

)
, (13)

Z∗
4 (η) = η

(
−1.75− 0.437η2 − · · ·

)
+ i
(
1.6− 1.6η2 + · · ·

)
, (14)

Z∗
5 (η) = η

(
−1.8− 0.487η2 − · · ·

)
+ i
(
1.635− 1.635η2 + · · ·

)
, (15)

which we denote H = ℏk
2 by the non-dimensional parameter. Quantum effects only appear

through non-dimensional parameters and can generally be said to be longitudinal quantity,
k, dependent. When the quantum parameter tends to zero, the dispersion relation (16)
reduces to the classical dispersion relation. In the range of small quantum effects, (H ≪ 1),
and the small wavelengths, (ξ ≪ 1, η ≪ 1), the dispersion relation of equation (11), becomes

ω2 − c2k2 − ω2
be
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+i
ω2
be

mγθ∥b

θ2⊥b

θ2∥b

w

k
D
√
πω2

be

θ2⊥b

θ2∥b
D − i

ω2
be

θ∥b

θ2⊥b

θ2∥b

pbd
m2γ2

D
√
π + ω2

pe

+ω2
pe

θ⊥p

θ∥p
+ ω2

pe

θ⊥p

θ∥p
(i1.539)

1

θ∥p

[(w
k
+ ppd ±H

)]
− ω2

pe

θ⊥p

θ∥p

H6

6
= 0, (16)

where D represents the relativistic effects,

D =

(
θ2⊥b

4c2
+

c2

3θ2⊥b

+
1

2

)/(
1 +

2c2

θ2⊥b

)(
c2

3θ2⊥b

)
.

The Weibel unstable wave is a low-frequency wave (|w| ≪ kc). Since, for a short wavelength
mode (ξ ≪ 1, η ≪ 1), by ignoring the contribution of the second and higher orders sentences
in equations (12-15) and considering w′ = wr + i (δk + vei) in the dispersion relation, the
instability growth rate can be derived by solving the coupled equation (for example spectral
index k = 3) where δk represents the growth rate of the strongly coupled plasma instability
with the kappa distribution function. Thus, Weibel instability growth rate in spectral index
3 is calculated as follows

δ3 =
k
(
−w2

be

w2
pe

+
w2

be

w2
pe
αD − c2k2

w2
pe

− 1 + β − βH2

6

)
1.539D

(
w2

be

w2
pe

α
θ∥b

m2γ2 + β
mθ∥p

) − vei, (17)

where α =
θ2
⊥b

θ2
∥b

and β =
θ⊥p

θ∥p
.

The ion–electron Coulomb collision frequency, vei for the Kappa function is defined as follows
[24]

vei =
Γ (k + 1)

√
πΓ
(
k − 1

2

) √
k

(k + 1)
2

ni

8

Ze4

4πε20

4π (me +mi)

mim2
ev

2
⊥v∥

lnΛ. (18)

Applying the variable χ is defined as follows

χ = uk − jk
k

Γ (k + 1)
√
πΓ
(
k − 1

2

) √
k

(k + 1)
2

ni

8

Ze4

4πε20

4π (me +mi)

mim2
ev

2
⊥v∥

lnΛ, (19)

where jk is equal 1.539, 1.600, and 1.635 respectively, also

uk =

w2
be

w2
pe

[−1 + αD] + β(
w2

beα
√
π

w2
pemγ(1.539)θ∥b

+ β
χmθ∥p

) . (20)

Then, the growth rate of Weibel instability is rewrite as

δ3 =
k

(1.539)D

χ−

(
1 + c2k2

w2
pe

+ βH2

6

)
nk

 , (21)

where

nk =
w2

beα
√
π

w2
pemγ (1.539) θ∥b

+
β

χmθ∥p
. (22)
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Also, δ4 and δ5 represent the growth rate of Weibel instability in spectral indices 4 and 5
k = 4, 5 are calculated as follows

δ4 =
k

(1.600)D

χ−

(
1 + c2k2

w2
pe

+ βH2

6

)
nk

 ,

δ4 =
k

(1.635)D

χ−

(
1 + c2k2

w2
pe

+ βH2

6

)
nk

 .

(23)

3 Observations

The purpose of this article was to calculate the growth rate of the Weibel instability in
the presence of relativistic electron beam that has penetrated into the coupled plasma by
considering the Coulomb collisions in the beam-plasma interaction. In Figure 1a, the Weibel
instability growth rate is plotted for different values of temperature anisotropy for the con-
stant collision term x = 0.5 in spectral index 3. It can be seen that the growth rate of
instability will increase by increasing the temperature anisotropy fraction of plasma due to
increase in the free energy of the plasma. The point that should be taken into account is
that with the significant effect of the temperature anisotropy of the plasma on the maxi-
mum value of the instability growth rate, it will be possible to suppress the unstable modes
in isotropic plasmas. In Figure 1b, the variation of Weibel instability growth rate is cal-
culated with and without the presence of the Coulomb collision effect in the beam-plasma
interaction for the anisotropy fraction

(
θ⊥p

θ∥p
= 1.8

)
. Observations show that the Coulomb

collision effect reduces growth rate significantly. The maximum value of the growth rate
in the presence of the Coulomb collision effect is equal to

(
0.2× 10−9

)
while it is equal to(

0.8× 10−9
)

without the Coulomb collision effect. It seems that this reduction in the effect
of the maximum growth rate is due to the increase in plasma free energy (see Figure 1c).

The variation of the growth rate according to the quantum parameter was calculated
to study the effect of the quantum parameter on the growth rate. It has been found that
the growth rate decreases with increase of the quantum parameter Figure 2a. The Weibel
instability growth rate is plotted for quantum parameter value (H = 1.2) with collisional
and non-collisional states, as in Figure 2b. The results show that the maximum growth rate
corresponds to the absence of the Coulomb collision effect.

In Figures 3a and 3b, the graphs of the growth rate for various spectral indices have
been drawn in the presence of collision and non-collision effect. Observations show that
with the increase of the spectral index, the growth rate decreases due to the convergence of
the beam spectrum in the plasma. Also, by comparing the maximum growth rate for the
spectral index in Figures 3a and 3b, it can be seen that in the absence of the collision effect,
the maximum growth rate of Weibel instability is lower than in the state where the collision
effect is present.

Finally, the variations of the growth rate for the relativity parameter Γ = 1.5 in collisional
and non-collisional state are show in Figure 4.
It is concluded that the growth rate in the collision state has a more stable situation than
in the non-collision state in the relativity parameter (γ = 15).
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(a) (b)

(c)

Figure 1: (a) Variation of the growth rate normalized to wpe, δ
wpe

, according to ck
wpe

for different
θ⊥p

θ∥p
for k = 3 (b) Variation of the growth rate normalized to wpe, δ

wpe
, according to ck

wpe
in θ⊥p

θ∥p
= 1.8

in the presence of collision and non-collision effect (c) 3D-graphvariation of ck
wpe

according to θ⊥p

θ∥p
with collision.

(a) (b)

(c)

Figure 2: (a) Variation of the growth rate, δ
wpe

, to different H for k = 3 (b) Variation of the growth
rate normalized to wpe, δ

wpe
, according to ck

wpe
, H = 1.2 in the presence of collision and non-collision

effect (c) 3D-graph variation of δ
wpe

according to ck
wpe

and quantum parameters H with collision.
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(a) (b)

(c)

Figure 3: (a) Variation of the growth rate normalized to wpe, δ
wpe

, according to ck
wpe

for different k

with collision effect x = 0.5 (b) Variation of the growth rate normalized to wpe, δ
wpe

, according to
ck
wpe

for different k in non-collision effect (c) 3D-graphvariation of δ
wpe

according to ck
wpe

and spectral
index k.

Figure 4: Variation of the growth rate normalized to wpe, δ
wpe

, according to ck
wpe

for γ = 1.5

in the presence of collision and non-collision effect.

4 Conclusions
In this research, the growth rate of Weibel instability was investigated in strongly coupled
plasma of inertial confinement fusion fuel with Kappa distribution function in the presence
of Coulomb collision. In this regard, analytical expressions were derived for imaginary parts
of dielectric constants as the Weibel instability of growth rate for the plasma particle Kappa
distribution function under the low-frequency wave condition. The obtained results indicate
that instability growth rate depends on the temperature anisotropy fraction, Coulomb col-
lision frequency, quantum parameter, relativistic parameter and the values of the spectral
index, k, of the distribution function. Results indicated that the instability growth rate
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increases by increasing the temperature anisotropy fraction and the relativistic parameter
for a fixed special index (k = 3). Finally, the obtained results also show that the Coulomb
collision frequency of particles plays an important role in suppressing the unstable modes in
isotropic plasmas due to increase in the free energy of the plasma. Therefore, it is concluded
that the Weibel instability growth rate in collision state has a more stable situation than in
the non-collision state in the strongly coupled plasma with Kappa distribution function.
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